LEADER 05343nam 2200637 a 450 001 9910147019003321 005 20170815121636.0 010 $a1-280-90102-0 010 $a9786610901029 010 $a0-470-09799-X 010 $a0-470-09800-7 035 $a(CKB)1000000000294539 035 $a(EBL)297304 035 $a(OCoLC)476071478 035 $a(SSID)ssj0000210318 035 $a(PQKBManifestationID)11181136 035 $a(PQKBTitleCode)TC0000210318 035 $a(PQKBWorkID)10282427 035 $a(PQKB)10563630 035 $a(MiAaPQ)EBC297304 035 $a(PPN)242769144 035 $a(EXLCZ)991000000000294539 100 $a20060621d2007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aNew frontiers in asymmetric catalysis$b[electronic resource] /$fedited by Koichi Mikami, Mark Lautens 210 $aHoboken, N.J. $cWiley-Interscience$dc2007 215 $a1 online resource (436 p.) 300 $aDescription based upon print version of record. 311 $a0-471-68026-5 320 $aIncludes bibliographical references and index. 327 $aNEW FRONTIERS IN ASYMMETRIC CATALYSIS; CONTENTS; PREFACE; CONTRIBUTORS; 1 Ligand Design for Catalytic Asymmetric Reduction; 1.1 Introduction; 1.2 Hydrogenation of Olefins; 1.2.1 Enamide Hydrogenation with Rhodium Catalysts; 1.2.2 Hydrogenation of Functionalized Olefins with Ruthenium Catalysts; 1.2.3 Hydrogenation of Simple Olefins with Iridium Catalysts; 1.3 Reduction of Ketones; 1.3.1 Hydrogenation of Functionalized Ketones; 1.3.2 Hydrogenation of Simple Ketones; 1.3.3 Transfer Hydrogenation of Ketones; 1.3.4 Hydroboration of Ketones; 1.4 Reduction of Imines; References 327 $a2 Ligand Design for Oxidation2.1 Introduction; 2.2 Catalytic Enantioselective Epoxidation of Unfunctionalized Olefins; 2.3 Enantioselective Metal-Catalyzed Baeyer-Villiger Oxidation; 2.4 Optical Resolution during Oxidation of Alcohols; 2.5 Catalytic Enantioselective Oxidative Coupling of 2-Naphthols; 2.6 Concluding Remarks; References; 3 Ligand Design for C-C Bond Formation; 3.1 Introduction; 3.2 1,4-Addition and Related Reactions; 3.2.1 Copper Catalysis; 3.2.2 Rhodium Catalysis; 3.3 Cross-Coupling Reactions; 3.3.1 Kumada-Type Cross-Couplings; 3.3.2 Suzuki-Type Cross-Couplings; References 327 $a4 Activation of Small Molecules (C=O, HCN, RN=C, and CO(2))4.1 Introduction; 4.2 Asymmetric Hydroformylation of Olefins; 4.2.1 The Mechanism of Hydroformylation; 4.2.2 Scope and Limitation of Asymmetric Hydroformylation; 4.2.3 ''Greener'' Catalysts in Asymmetric Hydroformylation; 4.3 Asymmetric Hydrocarbohydroxylation and Related Reactions; 4.3.1 Asymmetric Hydrocarbalkoxylation of Alkenes; 4.3.2 Asymmetric Oxidative Hydrocarbalkoxylation of Alkenes; 4.3.3 Asymmetric Carbonylation of Carbon-Heteroatom Bonds; 4.4 Asymmetric Ketone Formation from Carbon-Carbon Multiple Bonds and CO 327 $a4.4.1 Asymmetric Pauson-Khand Reaction4.4.2 Asymmetric Alternating Copolymerization of Olefins with CO; 4.4.3 Asymmetric Polymerization of Isocyanide; 4.5 Asymmetric Hydrocyanation of Olefins; 4.6 Asymmetric Addition of Cyanide and Isocyanide to Aldehydes or Imines; 4.7 Asymmetric Addition of Carbon Dioxide; 4.8 Conclusion and Outlook; References; 5 Asymmetric Synthesis Based on Catalytic Activation of C-H Bonds and C-C Bonds; 5.1 Introduction; 5.2 Asymmetric Synthesis via Activation of C-H Bonds; 5.2.1 Formation of C-C Bonds; 5.2.2 Formation of C-O Bonds; 5.2.3 Formation of C-N Bonds 327 $a5.3 Asymmetric Synthesis via Activation of C-C Bonds5.3.1 Enantioselective C-C Bond Cleavage; 5.3.2 Formation of C-C Bonds; 5.3.3 Formation of C-O Bonds; 5.4 Conclusions and Outlook; Acknowledgments; References; 6 Recent Progress in the Metathesis Reaction; 6.1 Introduction; 6.2 Olefin Metathesis; 6.2.1 Ring-Closing Olefin Metathesis; 6.2.2 Cross-Metathesis (CM) of Diene; 6.2.3 Ring-Opening Metathesis (ROM)-Ring-Closing Metathesis (RCM) of Alkene; 6.2.4 Catalytic Asymmetric Olefin Metathesis; 6.3 Enyne Metathesis; 6.3.1 Ring-Closing Enyne Metathesis 327 $a6.3.2 Ring-Opening Metathesis (ROM)-Ring-Closing Metathesis (RCM) of Cycloalkene-Yne 330 $aA compilation of recent advances and applications in asymmetric catalysisThe field of asymmetric catalysis has grown rapidly and plays a key role in drug discovery and pharmaceuticals. New Frontiers in Asymmetric Catalysis gives readers a fundamental understanding of the concepts and applications of asymmetric catalysis reactions and discusses the latest developments and findings. With contributions from preeminent scientists in their respective fields, it covers:* ""Rational"" ligand design, which is critically dependent on the reaction type (reduction, oxidation, and C-C bond 606 $aCatalysis$xResearch 606 $aAsymmetry (Chemistry)$xResearch 615 0$aCatalysis$xResearch. 615 0$aAsymmetry (Chemistry)$xResearch. 676 $a541.395 676 $a541/.395 701 $aMikami$b Koichi$0924240 701 $aLautens$b M$g(Mark)$0924241 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910147019003321 996 $aNew frontiers in asymmetric catalysis$92074101 997 $aUNINA