LEADER 03506nam 22006735 450 001 9910146314503321 005 20220329163143.0 010 $a3-540-45589-2 024 7 $a10.1007/BFb0103999 035 $a(CKB)1000000000437282 035 $a(SSID)ssj0000324167 035 $a(PQKBManifestationID)12080840 035 $a(PQKBTitleCode)TC0000324167 035 $a(PQKBWorkID)10304197 035 $a(PQKB)11127623 035 $a(DE-He213)978-3-540-45589-9 035 $a(MiAaPQ)EBC6286512 035 $a(MiAaPQ)EBC5579094 035 $a(Au-PeEL)EBL5579094 035 $a(OCoLC)1066186681 035 $a(PPN)155189077 035 $a(EXLCZ)991000000000437282 100 $a20121227d2000 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aInvariant Factors, Julia Equivalences and the (Abstract) Mandelbrot Set /$fby Karsten Keller 205 $a1st ed. 2000. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2000. 215 $a1 online resource (XII, 208 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1732 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-67434-9 320 $aIncludes bibliographical references and index. 327 $a1. Introduction: Quadratic iteration and Julia equivalences. The Mandelbrot set -- 2. Abstract Julia sets: Symbolic dynamics of the angle-doubling map. Invariant laminations. Julia equivalences -- 3. The Abstract Mandelbrot set: The Abstract Mandelbrot set - an atlas of Abstract Julia sets. The ordered Abstract Mandelbrot set. Renormalization. Correspondence and Translation Principles -- 4. Abstract and concrete theory: Quadratic iteration. Miscellaneous. Appendix: Invariant and completely invariant factors. Simple statements. Shift-invariant factors. Further interesting examples. 330 $aThis book is mainly devoted to the combinatorics of quadratic holomorphic dynamics. The conceptual kernel is a self-contained abstract counterpart of connected quadratic Julia sets which is built on Thurston's concept of a quadratic invariant lamination and on symbolic descriptions of the angle-doubling map. The theory obtained is illustrated in the complex plane. It is used to give rigorous proofs of some well-known and some partially new statements on the structure of the Mandelbrot set. The text is intended for graduate students and researchers. Some elementary knowledge in topology and in functions of one complex variable is assumed. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1732 606 $aDifferential equations, Partial 606 $aTopology 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 606 $aTopology$3https://scigraph.springernature.com/ontologies/product-market-codes/M28000 615 0$aDifferential equations, Partial. 615 0$aTopology. 615 14$aPartial Differential Equations. 615 24$aTopology. 676 $a514.74 686 $a37B10$2msc 686 $a54H20$2msc 686 $a30D05$2msc 700 $aKeller$b Karsten$4aut$4http://id.loc.gov/vocabulary/relators/aut$062627 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910146314503321 996 $aInvariant factors, Julia equivalences and the (abstract) Mandelbrot set$978789 997 $aUNINA