LEADER 03308nam 22005895 450 001 9910146313503321 005 20250729100234.0 010 $a3-540-46587-1 024 7 $a10.1007/BFb0112488 035 $a(CKB)1000000000437289 035 $a(SSID)ssj0000326507 035 $a(PQKBManifestationID)12069592 035 $a(PQKBTitleCode)TC0000326507 035 $a(PQKBWorkID)10296352 035 $a(PQKB)10556723 035 $a(DE-He213)978-3-540-46587-4 035 $a(MiAaPQ)EBC5596212 035 $a(PPN)155183826 035 $a(EXLCZ)991000000000437289 100 $a20100730d2000 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aSemiclassical Analysis for Diffusions and Stochastic Processes /$fby Vassili N. Kolokoltsov 205 $a1st ed. 2000. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2000. 215 $a1 online resource (VIII, 356 p.) 225 1 $aLecture Notes in Mathematics,$x1617-9692 ;$v1724 300 $aIncludes index. 311 08$a3-540-66972-8 327 $aGaussian diffusions -- Boundary value problem for Hamiltonian systems -- Semiclassical approximation for regular diffusion -- Invariant degenerate diffusion on cotangent bundles -- Transition probability densities for stable jump-diffusions -- Semiclassical asymptotics for the localised Feller-Courrège processes -- Complex stochastic diffusion or stochastic Schrödinger equation -- Some topics in semiclassical spectral analysis -- Path integration for the Schrödinger, heat and complex diffusion equations. 330 $aThe monograph is devoted mainly to the analytical study of the differential, pseudo-differential and stochastic evolution equations describing the transition probabilities of various Markov processes. These include (i) diffusions (in particular,degenerate diffusions), (ii) more general jump-diffusions, especially stable jump-diffusions driven by stable Lévy processes, (iii) complex stochastic Schrödinger equations which correspond to models of quantum open systems. The main results of the book concern the existence, two-sided estimates, path integral representation, and small time and semiclassical asymptotics for the Green functions (or fundamental solutions) of these equations, which represent the transition probability densities of the corresponding random process. The boundary value problem for Hamiltonian systems and some spectral asymptotics ar also discussed. Readers should have an elementary knowledge of probability, complex and functional analysis, and calculus. . 410 0$aLecture Notes in Mathematics,$x1617-9692 ;$v1724 606 $aMathematical analysis 606 $aProbabilities 606 $aAnalysis 606 $aProbability Theory 615 0$aMathematical analysis. 615 0$aProbabilities. 615 14$aAnalysis. 615 24$aProbability Theory. 676 $a519.23 700 $aKolokoltsov$b Vassili N$4aut$4http://id.loc.gov/vocabulary/relators/aut$0441084 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910146313503321 996 $aSemiclassical analysis for diffusions and stochastic processes$978817 997 $aUNINA