LEADER 03615nam 22007815 450 001 9910146309303321 005 20250730103306.0 010 $a3-540-48662-3 024 7 $a10.1007/BFb0097244 035 $a(CKB)1000000000437305 035 $a(SSID)ssj0000325315 035 $a(PQKBManifestationID)12049788 035 $a(PQKBTitleCode)TC0000325315 035 $a(PQKBWorkID)10323843 035 $a(PQKB)10675152 035 $a(DE-He213)978-3-540-48662-6 035 $a(MiAaPQ)EBC5577996 035 $a(Au-PeEL)EBL5577996 035 $a(OCoLC)1066177205 035 $a(MiAaPQ)EBC6858007 035 $a(Au-PeEL)EBL6858007 035 $a(PPN)155200186 035 $a(EXLCZ)991000000000437305 100 $a20121227d1999 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aNumerical Methods for Optimal Control Problems with State Constraints /$fby Radoslaw Pytlak 205 $a1st ed. 1999. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1999. 215 $a1 online resource (XV, 218 p.) 225 1 $aLecture Notes in Mathematics,$x1617-9692 ;$v1707 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a3-540-66214-6 327 $aEstimates on solutions to differential equations and their approximations -- First order method -- Implementation -- Second order method -- Runge-Kutta based procedure for optimal control of differential? Algebraic Equations. 330 $aWhile optimality conditions for optimal control problems with state constraints have been extensively investigated in the literature the results pertaining to numerical methods are relatively scarce. This book fills the gap by providing a family of new methods. Among others, a novel convergence analysis of optimal control algorithms is introduced. The analysis refers to the topology of relaxed controls only to a limited degree and makes little use of Lagrange multipliers corresponding to state constraints. This approach enables the author to provide global convergence analysis of first order and superlinearly convergent second order methods. Further, the implementation aspects of the methods developed in the book are presented and discussed. The results concerning ordinary differential equations are then extended to control problems described by differential-algebraic equations in a comprehensive way for the first time in the literature. 410 0$aLecture Notes in Mathematics,$x1617-9692 ;$v1707 606 $aSystem theory 606 $aControl theory 606 $aMathematical optimization 606 $aCalculus of variations 606 $aNumerical analysis 606 $aEconometrics 606 $aSystems Theory, Control 606 $aCalculus of Variations and Optimization 606 $aNumerical Analysis 606 $aQuantitative Economics 615 0$aSystem theory. 615 0$aControl theory. 615 0$aMathematical optimization. 615 0$aCalculus of variations. 615 0$aNumerical analysis. 615 0$aEconometrics. 615 14$aSystems Theory, Control. 615 24$aCalculus of Variations and Optimization. 615 24$aNumerical Analysis. 615 24$aQuantitative Economics. 676 $a510 700 $aPytlak$b Rados?aw$f1956-$062268 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910146309303321 996 $aNumerical methods for optimal control problems with state constraints$978162 997 $aUNINA