LEADER 03551nam 22007455 450 001 9910146307903321 005 20250730103442.0 010 $a9783540488149 010 $a3540488146 024 7 $a10.1007/BFb0100744 035 $a(CKB)1000000000437309 035 $a(SSID)ssj0000322575 035 $a(PQKBManifestationID)12072435 035 $a(PQKBTitleCode)TC0000322575 035 $a(PQKBWorkID)10283691 035 $a(PQKB)10633647 035 $a(DE-He213)978-3-540-48814-9 035 $a(MiAaPQ)EBC5585318 035 $a(Au-PeEL)EBL5585318 035 $a(OCoLC)1066191013 035 $a(MiAaPQ)EBC6859942 035 $a(Au-PeEL)EBL6859942 035 $a(PPN)155203649 035 $a(EXLCZ)991000000000437309 100 $a20121227d1999 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aDifferentiability of Six Operators on Nonsmooth Functions and p-Variation /$fby R. M. Dudley, R. Norvai?a 205 $a1st ed. 1999. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1999. 215 $a1 online resource (X, 282 p.) 225 1 $aLecture Notes in Mathematics,$x1617-9692 ;$v1703 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a9783540659754 311 08$a3540659757 327 $aA survey on differentiability of six operators in relation to probability and statistics -- Product integrals, young integrals and p-variation -- Differentiability of the composition and quantile operators for regulated and A. E. continuous functions -- Bibliographies on p-variation and ?-variation. 330 $aThe book is about differentiability of six operators on functions or pairs of functions: composition (f of g), integration (of f dg), multiplication and convolution of two functions, both varying, and the product integral and inverse operators for one function. The operators are differentiable with respect to p-variation norms with optimal remainder bounds. Thus the functions as arguments of the operators can be nonsmooth, possibly discontinuous, but four of the six operators turn out to be analytic (holomorphic) for some p-variation norms. The reader will need to know basic real analysis, including Riemann and Lebesgue integration. The book is intended for analysts, statisticians and probabilists. Analysts and statisticians have each studied the differentiability of some of the operators from different viewpoints, and this volume seeks to unify and expand their results. 410 0$aLecture Notes in Mathematics,$x1617-9692 ;$v1703 606 $aOperator theory 606 $aGlobal analysis (Mathematics) 606 $aManifolds (Mathematics) 606 $aFunctions of real variables 606 $aOperator Theory 606 $aGlobal Analysis and Analysis on Manifolds 606 $aReal Functions 615 0$aOperator theory. 615 0$aGlobal analysis (Mathematics) 615 0$aManifolds (Mathematics) 615 0$aFunctions of real variables. 615 14$aOperator Theory. 615 24$aGlobal Analysis and Analysis on Manifolds. 615 24$aReal Functions. 676 $a515.724 700 $aDudley$b R. M$g(Richard M.),$048562 702 $aNorvais?a$b Rimas$f1956- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910146307903321 996 $aDifferentiability of six operators on nonsmooth functions and p-variation$9262450 997 $aUNINA