LEADER 03172nam 2200649 450 001 9910146307603321 005 20220424001626.0 010 $a3-540-49480-4 024 7 $a10.1007/BFb0093107 035 $a(CKB)1000000000437312 035 $a(SSID)ssj0000321710 035 $a(PQKBManifestationID)12083780 035 $a(PQKBTitleCode)TC0000321710 035 $a(PQKBWorkID)10281024 035 $a(PQKB)11096441 035 $a(DE-He213)978-3-540-49480-5 035 $a(MiAaPQ)EBC5585937 035 $a(MiAaPQ)EBC6692212 035 $a(Au-PeEL)EBL5585937 035 $a(OCoLC)1066199802 035 $a(Au-PeEL)EBL6692212 035 $a(PPN)155187953 035 $a(EXLCZ)991000000000437312 100 $a20220424d1998 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aBurgers-KPZ turbulence $eGo?ttingen lectures /$fWojbor A. Woyczyn?ski 205 $a1st ed. 1998. 210 1$aBerlin, Germany ;$aNew York, New York :$cSpringer-Verlag,$d[1998] 210 4$dİ1998 215 $a1 online resource (XII, 328 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1700 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-65237-X 320 $aIncludes bibliographical references and index. 327 $aShock waves and the large scale structure (LSS) of the universe -- Hydrodynamic limits, nonlinear diffusions, and propagation of chaos -- Hopf-Cole formula and its asymptotic analysis -- Statistical description, parabolic approximation -- Hyperbolic approximation and inviscid limit -- Forced Burgers turbulence -- Passive tracer transport in Burgers' and related flows -- Fractal Burgers-KPZ models. 330 $aThese lecture notes are woven around the subject of Burgers' turbulence/KPZ model of interface growth, a study of the nonlinear parabolic equation with random initial data. The analysis is conducted mostly in the space-time domain, with less attention paid to the frequency-domain picture. However, the bibliography contains a more complete information about other directions in the field which over the last decade enjoyed a vigorous expansion. The notes are addressed to a diverse audience, including mathematicians, statisticians, physicists, fluid dynamicists and engineers, and contain both rigorous and heuristic arguments. Because of the multidisciplinary audience, the notes also include a concise exposition of some classical topics in probability theory, such as Brownian motion, Wiener polynomial chaos, etc. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1700 606 $aTurbulence$xMathematical models 606 $aBurgers equation 615 0$aTurbulence$xMathematical models. 615 0$aBurgers equation. 676 $a510 686 $a60H15$2msc 686 $a76L05$2msc 686 $a35Q53$2msc 700 $aWoyczyn?ski$b W. A$g(Wojbor Andrzej),$f1943-$042853 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910146307603321 996 $aBurgers-KPZ turbulence$92834075 997 $aUNINA