LEADER 01340nam 2200469 450 001 9910824878003321 005 20220531114745.0 010 $a84-9085-848-9 035 $a(CKB)3710000000862337 035 $a(MiAaPQ)EBC4760444 035 $a(MiAaPQ)EBC6522191 035 $a(Au-PeEL)EBL6522191 035 $a(OCoLC)952392448 035 $a(OCoLC)984795273 035 $a(FlNmELB)ELB58295 035 $a(EXLCZ)993710000000862337 100 $a20220531d2016 uy 0 101 0 $aspa 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aTra?fico de Drogas e Inmigracio?n Ilegal en Canarias /$fManuel Alcalde Lo?pez 210 1$aMadrid :$cDykinson, S.L.,$d[2016] 210 4$dİ2016 215 $a1 online resource (389 pa?ginas) 311 $a84-9085-818-7 320 $aContiene bibliografi?a. 606 $aDrug traffic$zSpain 606 $aNoncitizens$zSpain 607 $aCanary Islands$2fast 615 0$aDrug traffic 615 0$aNoncitizens 676 $a344.460545 700 $aAlcalde Lo?pez$b Manuel$01680335 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910824878003321 996 $aTra?fico de Drogas e Inmigracio?n Ilegal en Canarias$94049009 997 $aUNINA LEADER 04013nam 22006855 450 001 9910146306203321 005 20250731082137.0 010 $a3-540-68521-9 024 7 $a10.1007/978-3-540-68521-0 035 $a(CKB)1000000000437316 035 $a(SSID)ssj0000324886 035 $a(PQKBManifestationID)12124433 035 $a(PQKBTitleCode)TC0000324886 035 $a(PQKBWorkID)10322481 035 $a(PQKB)11216380 035 $a(DE-He213)978-3-540-68521-0 035 $a(MiAaPQ)EBC3088526 035 $a(MiAaPQ)EBC6485915 035 $a(PPN)155184598 035 $a(BIP)47731173 035 $a(EXLCZ)991000000000437316 100 $a20121227d1998 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aModel Theory and Algebraic Geometry $eAn introduction to E. Hrushovski's proof of the geometric Mordell-Lang conjecture /$fedited by Elisabeth Bouscaren 205 $a1st ed. 1998. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1998. 215 $a1 online resource (XVI, 216 p.) 225 1 $aLecture Notes in Mathematics,$x1617-9692 ;$v1696 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a3-540-64863-1 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $ato model theory -- to stability theory and Morley rank -- Omega-stable groups -- Model theory of algebraically closed fields -- to abelian varieties and the Mordell-Lang conjecture -- The model-theoretic content of Lang?s conjecture -- Zariski geometries -- Differentially closed fields -- Separably closed fields -- Proof of the Mordell-Lang conjecture for function fields -- Proof of Manin?s theorem by reduction to positive characteristic. 330 $aIntroduction Model theorists have often joked in recent years that the part of mathemat­ ical logic known as "pure model theory" (or stability theory), as opposed to the older and more traditional "model theory applied to algebra" , turns out to have more and more to do with other subjects ofmathematics and to yield gen­ uine applications to combinatorial geometry, differential algebra and algebraic geometry. We illustrate this by presenting the very striking application to diophantine geometry due to Ehud Hrushovski: using model theory, he has given the first proof valid in all characteristics of the "Mordell-Lang conjecture for function fields" (The Mordell-Lang conjecture for function fields, Journal AMS 9 (1996), 667-690). More recently he has also given a new (model theoretic) proof of the Manin-Mumford conjecture for semi-abelian varieties over a number field. His proofyields the first effective bound for the cardinality ofthe finite sets involved (The Manin-Mumford conjecture, preprint). There have been previous instances of applications of model theory to alge­ bra or number theory, but these appl~cations had in common the feature that their proofs used a lot of algebra (or number theory) but only very basic tools and results from the model theory side: compactness, first-order definability, elementary equivalence... 410 0$aLecture Notes in Mathematics,$x1617-9692 ;$v1696 606 $aGeometry, Algebraic 606 $aLogic, Symbolic and mathematical 606 $aNumber theory 606 $aAlgebraic Geometry 606 $aMathematical Logic and Foundations 606 $aNumber Theory 615 0$aGeometry, Algebraic. 615 0$aLogic, Symbolic and mathematical. 615 0$aNumber theory. 615 14$aAlgebraic Geometry. 615 24$aMathematical Logic and Foundations. 615 24$aNumber Theory. 676 $a516.35 686 $a03C60$2msc 702 $aBouscaren$b Elisabeth$f1956- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910146306203321 996 $aModel theory and algebraic geometry$978161 997 $aUNINA