LEADER 03639nam 22008415 450 001 9910146304803321 005 20250731082119.0 010 $a3-540-68931-1 024 7 $a10.1007/BFb0093633 035 $a(CKB)1000000000437320 035 $a(SSID)ssj0000324847 035 $a(PQKBManifestationID)12117822 035 $a(PQKBTitleCode)TC0000324847 035 $a(PQKBWorkID)10321908 035 $a(PQKB)11119411 035 $a(DE-He213)978-3-540-68931-7 035 $a(MiAaPQ)EBC5592465 035 $a(Au-PeEL)EBL5592465 035 $a(OCoLC)1066198673 035 $a(MiAaPQ)EBC6842663 035 $a(Au-PeEL)EBL6842663 035 $a(OCoLC)159957204 035 $a(PPN)155217674 035 $a(BIP)39410033 035 $a(BIP)47743207 035 $a(EXLCZ)991000000000437320 100 $a20121227d1998 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aMinimax and Monotonicity /$fby Stephen Simons 205 $a1st ed. 1998. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1998. 215 $a1 online resource (XI, 172 p.) 225 1 $aLecture Notes in Mathematics,$x1617-9692 ;$v1693 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a3-540-64755-4 327 $aFunctional analytic preliminaries -- Multifunctions -- A digression into convex analysis -- General monotone multifunctions -- The sum problem for reflexive spaces -- Special maximal monotone multifunctions -- Subdifferentials -- Discontinuous positive linear operators -- The sum problem for general banach spaces -- Open problems. 330 $aFocussing on the theory (both classical and recent) of monotone multifunctions on a (possibly nonreflexive) Banach space, this book looks at the big convexification of a multifunction; convex functions associated with a multifunction; minimax theorems as a tool in functional analysis and convex analysis. It includes new results on the existence of continuous linear functionals; the conjugates, biconjugates and subdifferentials of convex lower semicontinuous functions, Fenchel duality; (possibly unbounded) positive linear operators from a Banach space into its dual; the sum of maximal monotone operators, and a list of open problems. The reader is expected to know basic functional analysis and calculus of variations, including the Bahn-Banach theorem, Banach-Alaoglu theorem, Ekeland's variational principle. 410 0$aLecture Notes in Mathematics,$x1617-9692 ;$v1693 606 $aFunctional analysis 606 $aOperator theory 606 $aSystem theory 606 $aControl theory 606 $aMathematical optimization 606 $aCalculus of variations 606 $aFunctional Analysis 606 $aOperator Theory 606 $aSystems Theory, Control 606 $aCalculus of Variations and Optimization 615 0$aFunctional analysis. 615 0$aOperator theory. 615 0$aSystem theory. 615 0$aControl theory. 615 0$aMathematical optimization. 615 0$aCalculus of variations. 615 14$aFunctional Analysis. 615 24$aOperator Theory. 615 24$aSystems Theory, Control. 615 24$aCalculus of Variations and Optimization. 676 $a515.7248 686 $a49J35$2msc 686 $a47H05$2msc 700 $aSimons$b Stephen$f1938-$057289 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910146304803321 996 $aMinimax and monotonicity$978168 997 $aUNINA