LEADER 02994nam 22006495 450 001 9910146299303321 005 20250731082115.0 010 $a3-540-69697-0 024 7 $a10.1007/BFb0094576 035 $a(CKB)1000000000437330 035 $a(SSID)ssj0000321690 035 $a(PQKBManifestationID)12133182 035 $a(PQKBTitleCode)TC0000321690 035 $a(PQKBWorkID)10280795 035 $a(PQKB)10553056 035 $a(DE-He213)978-3-540-69697-1 035 $a(MiAaPQ)EBC5578750 035 $a(MiAaPQ)EBC6700110 035 $a(Au-PeEL)EBL5578750 035 $a(OCoLC)1066197182 035 $a(Au-PeEL)EBL6700110 035 $a(PPN)155213059 035 $a(EXLCZ)991000000000437330 100 $a20121227d1998 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 14$aThe Boundary-Domain Integral Method for Elliptic Systems $eWith Application to Shells /$fby Andreas Pomp 205 $a1st ed. 1998. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1998. 215 $a1 online resource (XVI, 172 p.) 225 1 $aLecture Notes in Mathematics,$x1617-9692 ;$v1683 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a3-540-64163-7 327 $aPseudohomogeneous distributions -- Levi functions for elliptic systems of partial differential equations -- Systems of integral equations, generated by Levi functions -- The differential equations of the DV model -- Levi functions for the shell equations -- The system of integral equations and its numerical solution -- An example: Katenoid shell under torsion. 330 $aThis monograph gives a description of all algorithmic steps and a mathematical foundation for a special numerical method, namely the boundary-domain integral method (BDIM). This method is a generalization of the well-known boundary element method, but it is also applicable to linear elliptic systems with variable coefficients, especially to shell equations. The text should be understandable at the beginning graduate-level. It is addressed to researchers in the fields of numerical analysis and computational mechanics, and will be of interest to everyone looking at serious alternatives to the well-established finite element methods. 410 0$aLecture Notes in Mathematics,$x1617-9692 ;$v1683 606 $aNumerical analysis 606 $aDifferential equations 606 $aNumerical Analysis 606 $aDifferential Equations 615 0$aNumerical analysis. 615 0$aDifferential equations. 615 14$aNumerical Analysis. 615 24$aDifferential Equations. 676 $a510 686 $a65N38$2msc 700 $aPomp$b Andreas$f1952-$061765 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910146299303321 996 $aBoundary-domain integral method for elliptic systems$978818 997 $aUNINA