LEADER 01000nam a2200289 i 4500 001 991001072289707536 005 20020507110129.0 008 970308s1980 de ||| | eng 035 $ab10169684-39ule_inst 035 $aLE00641660$9ExL 040 $aDip.to Fisica$bita 084 $a510.92 084 $a614.4'0724 084 $aRA652 100 1 $aFrauenthal, J.$0462790 245 10$aMathematical modeling in epidemiology /$cJ. Frauenthal 260 $aBerlin :$bSpringer,$c1980 300 $avii, 118 p. :$bill. ;$c24 cm. 500 $aIncludes bibliography and index. 650 4$aEpistemology-Mathematical models 650 4$aMathematical models 907 $a.b10169684$b21-09-06$c27-06-02 912 $a991001072289707536 945 $aLE006 510.90/510.93 FRA$g1$i2006000024037$lle006$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10207077$z27-06-02 996 $aMathematical modeling in epidemiology$9188435 997 $aUNISALENTO 998 $ale006$b01-01-97$cm$da $e-$feng$gde $h0$i1 LEADER 03402nam 22007695 450 001 9910146296003321 005 20260128234053.0 010 $a3-540-69657-1 024 7 $a10.1007/BFb0093438 035 $a(CKB)1000000000437335 035 $a(SSID)ssj0000323521 035 $a(PQKBManifestationID)12072464 035 $a(PQKBTitleCode)TC0000323521 035 $a(PQKBWorkID)10300016 035 $a(PQKB)10118355 035 $a(DE-He213)978-3-540-69657-5 035 $a(MiAaPQ)EBC5595560 035 $a(MiAaPQ)EBC6700624 035 $a(Au-PeEL)EBL5595560 035 $a(OCoLC)1076236160 035 $a(Au-PeEL)EBL6700624 035 $a(PPN)155175130 035 $a(EXLCZ)991000000000437335 100 $a20121227d1997 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 14$aThe Geometry of Ordinary Variational Equations /$fby Olga Krupkova 205 $a1st ed. 1997. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1997. 215 $a1 online resource (CCLXIV, 254 p.) 225 1 $aLecture Notes in Mathematics,$x1617-9692 ;$v1678 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a3-540-63832-6 320 $aIncludes bibliographical references and index. 327 $aBasic geometric tools -- Lagrangean dynamics on fibered manifolds -- Variational Equations -- Hamiltonian systems -- Regular Lagrangean systems -- Singular Lagrangean systems -- Symmetries of Lagrangean systems -- Geometric integration methods -- Lagrangean systems on ?: R×M»R. 330 $aThe book provides a comprehensive theory of ODE which come as Euler-Lagrange equations from generally higher-order Lagrangians. Emphasis is laid on applying methods from differential geometry (fibered manifolds and their jet-prolongations) and global analysis (distributions and exterior differential systems). Lagrangian and Hamiltonian dynamics, Hamilton-Jacobi theory, etc., for any Lagrangian system of any order are presented. The key idea - to build up these theories as related with the class of equivalent Lagrangians - distinguishes this book from other texts on higher-order mechanics. The reader should be familiar with elements of differential geometry, global analysis and the calculus of variations. 410 0$aLecture Notes in Mathematics,$x1617-9692 ;$v1678 606 $aMathematical analysis 606 $aGeometry, Differential 606 $aGlobal analysis (Mathematics) 606 $aManifolds (Mathematics) 606 $aMechanics, Applied 606 $aAnalysis 606 $aDifferential Geometry 606 $aGlobal Analysis and Analysis on Manifolds 606 $aEngineering Mechanics 615 0$aMathematical analysis. 615 0$aGeometry, Differential. 615 0$aGlobal analysis (Mathematics) 615 0$aManifolds (Mathematics) 615 0$aMechanics, Applied. 615 14$aAnalysis. 615 24$aDifferential Geometry. 615 24$aGlobal Analysis and Analysis on Manifolds. 615 24$aEngineering Mechanics. 676 $a515 700 $aKrupkova?$b Olga$f1960-$061656 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910146296003321 996 $aGeometry of ordinary variational equations$978087 997 $aUNINA