LEADER 03121nam 22006495 450 001 9910146294203321 005 20250801064800.0 010 $a3-540-69623-7 024 7 $a10.1007/BFb0094086 035 $a(CKB)1000000000437339 035 $a(SSID)ssj0000324447 035 $a(PQKBManifestationID)12117202 035 $a(PQKBTitleCode)TC0000324447 035 $a(PQKBWorkID)10314195 035 $a(PQKB)11245439 035 $a(DE-He213)978-3-540-69623-0 035 $a(MiAaPQ)EBC5610574 035 $a(Au-PeEL)EBL5610574 035 $a(OCoLC)1078997650 035 $a(MiAaPQ)EBC6819128 035 $a(Au-PeEL)EBL6819128 035 $a(OCoLC)1287131515 035 $a(PPN)155190644 035 $a(EXLCZ)991000000000437339 100 $a20121227d1997 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aLinear Pro-p-Groups of Finite Width /$fby Gundel Klaas, Charles R. Leedham-Green, Wilhelm Plesken 205 $a1st ed. 1997. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1997. 215 $a1 online resource (VIII, 116 p.) 225 1 $aLecture Notes in Mathematics,$x1617-9692 ;$v1674 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a3-540-63643-9 320 $aIncludes bibliographical references (pages [109]-111) and index. 327 $aElementary properties of width -- p-adically simple groups -- Periodicity -- Chevalley groups -- Some classical groups -- Some thin groups -- Algorithms on fields -- Fields of small degree -- Algorithm for finding a filtration and the obliquity -- The theory behind the tables -- Tables -- Uncountably many just infinite pro-p-groups of finite width -- Some open problems. 330 $aThe normal subgroup structure of maximal pro-p-subgroups of rational points of algebraic groups over the p-adics and their characteristic p analogues are investigated. These groups have finite width, i.e. the indices of the sucessive terms of the lower central series are bounded since they become periodic. The richness of the lattice of normal subgroups is studied by the notion of obliquity. All just infinite maximal groups with Lie algebras up to dimension 14 and most Chevalley groups and classical groups in characteristic 0 and p are covered. The methods use computers in small cases and are purely theoretical for the infinite series using root systems or orders with involutions. 410 0$aLecture Notes in Mathematics,$x1617-9692 ;$v1674 606 $aGroup theory 606 $aGroup Theory and Generalizations 615 0$aGroup theory. 615 14$aGroup Theory and Generalizations. 676 $a512.55 686 $a20G25$2msc 700 $aKlaas$b G$g(Gundel),$f1967-$061646 702 $aLeedham-Green$b C. R$g(Charles Richard),$f1940- 702 $aPlesken$b Wilhelm$f1950- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910146294203321 996 $aLinear pro-p-groups of finite width$9261830 997 $aUNINA