LEADER 03093nam 22007095 450 001 9910146289403321 005 20250731103614.0 010 $a3-540-69192-8 024 7 $a10.1007/BFb0093548 035 $a(CKB)1000000000437349 035 $a(SSID)ssj0000323897 035 $a(PQKBManifestationID)12072477 035 $a(PQKBTitleCode)TC0000323897 035 $a(PQKBWorkID)10304421 035 $a(PQKB)11103017 035 $a(DE-He213)978-3-540-69192-1 035 $a(MiAaPQ)EBC5576622 035 $a(Au-PeEL)EBL5576622 035 $a(OCoLC)1066184054 035 $a(MiAaPQ)EBC6842455 035 $a(Au-PeEL)EBL6842455 035 $a(OCoLC)1159641341 035 $a(PPN)155232932 035 $a(EXLCZ)991000000000437349 100 $a20121227d1997 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aIdeal Spaces /$fby Martin Väth 205 $a1st ed. 1997. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1997. 215 $a1 online resource (VI, 150 p.) 225 1 $aLecture Notes in Mathematics,$x1617-9692 ;$v1664 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a3-540-63160-7 327 $aIntroduction -- Basic definitions and properties -- Ideal spaces with additional properties -- Ideal spaces on product measures and calculus -- Operators and applications -- Appendix: Some measurability results -- Sup-measurable operator functions -- Majorising principles for measurable operator functions -- A generalization of a theorem of Luxemburg-Gribanov -- References -- Index. 330 $aIdeal spaces are a very general class of normed spaces of measurable functions, which includes e.g. Lebesgue and Orlicz spaces. Their most important application is in functional analysis in the theory of (usual and partial) integral and integro-differential equations. The book is a rather complete and self-contained introduction into the general theory of ideal spaces. Some emphasis is put on spaces of vector-valued functions and on the constructive viewpoint of the theory (without the axiom of choice). The reader should have basic knowledge in functional analysis and measure theory. 410 0$aLecture Notes in Mathematics,$x1617-9692 ;$v1664 606 $aFunctional analysis 606 $aFunctions of real variables 606 $aLogic, Symbolic and mathematical 606 $aFunctional Analysis 606 $aReal Functions 606 $aMathematical Logic and Foundations 615 0$aFunctional analysis. 615 0$aFunctions of real variables. 615 0$aLogic, Symbolic and mathematical. 615 14$aFunctional Analysis. 615 24$aReal Functions. 615 24$aMathematical Logic and Foundations. 676 $a515.73 686 $a46E30$2msc 700 $aVa?th$b Martin$f1967-$061875 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910146289403321 996 $aIdeal spaces$978828 997 $aUNINA