LEADER 02871nam 2200589 450 001 9910146287403321 005 20220421210433.0 010 $a3-540-69122-7 024 7 $a10.1007/BFb0094700 035 $a(CKB)1000000000437354 035 $a(SSID)ssj0000327213 035 $a(PQKBManifestationID)12080141 035 $a(PQKBTitleCode)TC0000327213 035 $a(PQKBWorkID)10299545 035 $a(PQKB)10812626 035 $a(DE-He213)978-3-540-69122-8 035 $a(MiAaPQ)EBC5590700 035 $a(MiAaPQ)EBC6691488 035 $a(Au-PeEL)EBL5590700 035 $a(OCoLC)1066189735 035 $a(Au-PeEL)EBL6691488 035 $a(PPN)155204041 035 $a(EXLCZ)991000000000437354 100 $a20220421d1997 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aTheory of a higher order Sturm-Liouville equation /$fVladimir Kozlov, Vladimir Maz'ya 205 $a1st ed. 1997. 210 1$aBerlin, Heidelberg :$cSpringer-Verlag,$d[1997] 210 4$dİ1997 215 $a1 online resource (XII, 144 p.) 225 1 $aLecture Notes in Mathematics ;$v1659 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-63065-1 327 $aBasic equation with constant coefficients -- The operator M(? t ) on a semiaxis and an interval -- The operator M(? t )??0 with constant ?0 -- Green's function for the operator M(? t )??(t) -- Uniqueness and solvability properties of the operator M(? t ??(t) -- Properties of M(? t ??(t) under various assumptions about ?(t) -- Asymptotics of solutions at infinity -- Application to ordinary differential equations with operator coefficients. 330 $aThis book develops a detailed theory of a generalized Sturm-Liouville Equation, which includes conditions of solvability, classes of uniqueness, positivity properties of solutions and Green's functions, asymptotic properties of solutions at infinity. Of independent interest, the higher-order Sturm-Liouville equation also proved to have important applications to differential equations with operator coefficients and elliptic boundary value problems for domains with non-smooth boundaries. The book addresses graduate students and researchers in ordinary and partial differential equations, and is accessible with a standard undergraduate course in real analysis. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v1659. 606 $aSturm-Liouville equation 615 0$aSturm-Liouville equation. 676 $a515.35 700 $aKozlov$b Vladimir$f1954-$061895 702 $aMaz?i?a?$b V. G. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910146287403321 996 $aTheory of a higher-order Sturm-Liouville equation$9374784 997 $aUNINA