LEADER 02365nam 2200577 450 001 9910146286603321 005 20220304090322.0 010 $a3-540-68414-X 024 7 $a10.1007/BFb0093995 035 $a(CKB)1000000000437356 035 $a(SSID)ssj0000326619 035 $a(PQKBManifestationID)12124507 035 $a(PQKBTitleCode)TC0000326619 035 $a(PQKBWorkID)10296690 035 $a(PQKB)11167399 035 $a(DE-He213)978-3-540-68414-5 035 $a(MiAaPQ)EBC5591303 035 $a(Au-PeEL)EBL5591303 035 $a(OCoLC)1066181341 035 $a(MiAaPQ)EBC6842640 035 $a(Au-PeEL)EBL6842640 035 $a(OCoLC)1113622243 035 $a(PPN)155179764 035 $a(EXLCZ)991000000000437356 100 $a20220304d1997 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 14$aThe semi-simple zeta function of quaternionic shimura varieties /$fHarry Reimann 205 $a1st ed. 1997. 210 1$aBerlin ;$aHeidelberg :$cSpringer-Verlag,$d[1997] 210 4$dİ1997 215 $a1 online resource (X, 154 p.) 225 1 $aLecture Notes in Mathematics ;$v1657 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-62645-X 330 $aThis monograph is concerned with the Shimura variety attached to a quaternion algebra over a totally real number field. For any place of good (or moderately bad) reduction, the corresponding (semi-simple) local zeta function is expressed in terms of (semi-simple) local L-functions attached to automorphic representations. In an appendix a conjecture of Langlands and Rapoport on the reduction of a Shimura variety in a very general case is restated in a slightly stronger form. The reader is expected to be familiar with the basic concepts of algebraic geometry, algebraic number theory and the theory of automorphic representation. 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v1657. 606 $aShimura varieties 615 0$aShimura varieties. 676 $a516.35 700 $aReimann$b Harry$f1956-$061869 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910146286603321 996 $aSemi-simple zeta function of quaternionic Shimura varieties$978849 997 $aUNINA