LEADER 02531nam 2200649 450 001 9910146285603321 005 20220304233404.0 010 $a3-540-68347-X 024 7 $a10.1007/BFb0093387 035 $a(CKB)1000000000437359 035 $a(SSID)ssj0000324256 035 $a(PQKBManifestationID)12064887 035 $a(PQKBTitleCode)TC0000324256 035 $a(PQKBWorkID)10304534 035 $a(PQKB)10272447 035 $a(DE-He213)978-3-540-68347-6 035 $a(MiAaPQ)EBC5585359 035 $a(Au-PeEL)EBL5585359 035 $a(OCoLC)1066185242 035 $a(MiAaPQ)EBC6842714 035 $a(Au-PeEL)EBL6842714 035 $a(OCoLC)1292358845 035 $a(PPN)155197363 035 $a(EXLCZ)991000000000437359 100 $a20220304d1997 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aKnots and links in three-dimensional flows /$fRobert W. Ghrist, Philip J. Holmes, and Michael C. Sullivan 205 $a1st ed. 1997. 210 1$aBerlin, Germany ;$aNew York, New York :$cSpringer-Verlag,$d[1997] 210 4$dİ1997 215 $a1 online resource (X, 214 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1654 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-62628-X 327 $aPrerequisites -- Templates -- Template theory -- Bifurcations -- Invariants -- Concluding remarks. 330 $aThe closed orbits of three-dimensional flows form knots and links. This book develops the tools - template theory and symbolic dynamics - needed for studying knotted orbits. This theory is applied to the problems of understanding local and global bifurcations, as well as the embedding data of orbits in Morse-smale, Smale, and integrable Hamiltonian flows. The necesssary background theory is sketched; however, some familiarity with low-dimensional topology and differential equations is assumed. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1654 606 $aLink theory 606 $aKnot theory 615 0$aLink theory. 615 0$aKnot theory. 676 $a510 686 $a57M25$2msc 700 $aGhrist$b Robert W.$f1969-$061533 702 $aHolmes$b Philip$f1945- 702 $aSullivan$b Michael C.$f1959- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910146285603321 996 $aKnots and links in three-dimensional flows$9262439 997 $aUNINA