LEADER 08538oam 2200589zu 450 001 9910146082803321 005 20230607215310.0 010 $a0-471-46099-0 010 $a1-280-55650-1 010 $a9786610556502 010 $a0-470-34740-6 010 $a0-471-43393-4 035 $a(CKB)1000000000018951 035 $a(SSID)ssj0000296327 035 $a(PQKBManifestationID)11244985 035 $a(PQKBTitleCode)TC0000296327 035 $a(PQKBWorkID)10326796 035 $a(PQKB)10864486 035 $a(MiAaPQ)EBC4957385 035 $a(Au-PeEL)EBL4957385 035 $a(CaONFJC)MIL55650 035 $a(OCoLC)1024240490 035 $a(NjHacI)991000000000018951 035 $a(EXLCZ)991000000000018951 100 $a20160829d2002 uy 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe Fields of Electronics: Understanding Electronics Using Basic Physics 210 31$a[Place of publication not identified]$cWiley Interscience Imprint$d2002 215 $a1 online resource (201 pages) 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-471-22290-9 327 $aThe electric field -- capacitors, magnetic fields, and transformers -- utility power and circuit concepts -- A few more tools -- analog design -- Digital design and mixed analog/digital design -- Facilities and sites -- Appendices. 1. The Electric Field -- 1.1. Introduction -- 1.2. Charge -- 1.3. Electrical Forces on Charged Bodies -- 1.4. Electric Field -- 1.5. Work -- 1.6. Voltage -- 1.7. Charges on Surfaces -- 1.8. Equipotential Surfaces -- 1.9. Field Units -- 1.10. Batteries -- A Voltage Source -- 1.11. Current -- 1.12. Resistors -- 1.13. Resistors in Series or Parallel -- 1.14. E Field and Current Flow -- 1.15. Problems -- 1.16. Energy Transfer -- 1.17. Resistor Dissipation -- 1.18. Problems -- 1.19. Electric Field Energy -- 1.20. Ground and Ground Planes -- 1.21. Induced Charges -- 1.22. Forces and Energy -- 1.23. Problems -- 1.24. Review -- 2. Capacitors, Magnetic Fields, and Transformers -- 2.1. Dielectrics -- 2.2. Displacement Field -- 2.3. Capacitance -- 2.4. Capacitance of Two Parallel Plates -- 2.5. Capacitance in Space -- 2.6. Current Flow in Capacitors -- 2.7. RC Time Constant -- 2.8. Problems -- 2.9. Shields -- 2.10. Magnetic Field -- 2.11. Solenoids -- 2.12. Ampere's Law -- 2.13. Problems -- 2.14. Magnetic Circuit -- 2.15. Induction or B Field -- 2.16. Magnetic Circuit without a Gap -- 2.17. Magnetic Circuit with a Gap -- 2.18. Transformer Action -- 2.19. Magnetic Field Energy -- 2.20. Inductors -- 2.21. L/R Time Constant -- 2.22. Mutual Inductance -- 2.23. Problems -- 2.24. Review -- 3. Utility Power and Circuit Concepts -- 3.1. Sine Waves -- 3.2. Reactance and Impedance -- 3.3. Problems -- 3.4. Resonance -- 3.5. Phase -- 3.6. Parallel RL and RC Circuits -- 3.7. Problems -- 3.8. RMS Values -- 3.9. Problems -- 3.10. Transmission Lines -- 3.11. Poynting's Vector -- 3.12. Transmission Line over an Equipotential Surface -- 3.13. Transmission Lines and Sine Waves -- 3.14. Coaxial Transmission -- 3.15. Utility Power Distribution -- 3.16. Earth as a Conductor -- 3.17. Power Transformers in Electronic Hardware -- 3.18. Electrostatic Shields in Electronic Hardware -- 3.19. Where to Connect the Metal Box -- 3.20. Problems -- 3.21. Review -- 4. A Few More Tools -- 4.1. Introduction -- 4.2. Resistivity -- 4.3. Inductance of Isolated Conductors -- 4.4. Ohms per Square -- 4.5. Problems -- 4.6. Radiation -- 4.7. Half-Dipole Antennas -- 4.8. Current Loop Radiators -- 4.9. Field Energy in Space -- 4.10. Problems -- 4.11. Reflection -- 4.12. Skin Effect -- 4.13. Problems -- 4.14. Surface Currents -- 4.15. Ground Planes and Fields -- 4.16. Apertures -- 4.17. Multiple Apertures -- 4.18. Waveguides -- 4.19. Attenuation of Fields by a Conductive Enclosure -- 4.20. Gaskets -- 4.21. Honeycombs -- 4.22. Wave Coupling into Circuits -- 4.23. Problems -- 4.24. Square Waves -- 4.25. Harmonic Content in Utility Power -- 4.26. Spikes and Pulses -- 4.27. Transformers -- 4.28. Eddy Currents -- 4.29. Ferrite Materials -- 4.30. Problems -- 4.31. Review -- 5. Analog Design -- 5.1. Introduction -- 5.2. Analog Signals -- 5.3. Common-Mode Interference -- 5.4. Common-Mode Rejection in Instrumentation -- 5.5. Problems -- 5.6. Voltage Measurement: Oscilloscopes -- 5.7. Microphones -- 5.8. Resistors -- 5.9. Guard Rings -- 5.10. Capacitors -- 5.11. Problems -- 5.12. Feedback Processes -- 5.13. Problems -- 5.14. Miller Effect -- 5.15. Inductors -- 5.16. Transformers -- 5.17. Problems -- 5.18. Isolation Transformers -- 5.19. Solenoids and Relays -- 5.20. Problems -- 5.21. Power Line Filters -- 5.22. Request for Energy -- 5.23. Filter and Energy Requests -- 5.24. Power Line Filters above 1 MHz -- 5.25. Mounting the Filter -- 5.26. Optical Isolators -- 5.27. Hall Effect -- 5.28. Surface Effects -- 5.29. Review -- 6. Digital Design and Mixed Analog/Digital Design -- 6.1. Introduction -- 6.2. Logic and Transmission Lines -- 6.3. Decoupling Capacitors -- 6.4. Ground Planes -- 6.5. Power Planes -- 6.6. Decoupling Power Geometries -- 6.7. Ground Plane Islands -- 6.8. Radiation from Loops -- 6.9. Problems -- 6.10. Leaving the Board -- 6.11. Ribbon Cable and Common-Mode Coupling -- 6.12. Braided Cable Shields -- 6.13. Transfer Impedance -- 6.14. Mechanical Cable Terminations -- 6.15. Problems -- 6.16. Mounting Power Transistors -- 6.17. Electrostatic Discharge -- 6.18. ESD Precautions -- 6.19. Zapping -- 6.20. Product Testing: Radiation -- 6.21. Military Testing -- 6.22. Chattering Relay Test -- 6.23. Euro Standards -- 6.24. LISN -- 6.25. Sniffers -- 6.26. Simple Antenna -- 6.27. Peripherals -- 6.28. Problems -- 6.29. Lightning -- 6.30. Problems -- 6.31. Mixing Analog and Digital Design -- 6.32. Ground Bounce -- 6.33. Review -- 7. Facilities and Sites -- 7.1. Introduction -- 7.2. Utility Power -- 7.3. Floating Utility Power -- 7.4. Isolated Grounds -- 7.5. Single-Point Grounding -- 7.6. Ground Planes -- 7.7. Alternative Ground Planes -- 7.8. Power Centers -- 7.9. Lightning Protection -- 7.10. Surge Suppression -- 7.11. Racks -- 7.12. Magnet Fields around Distribution Transformers -- 7.13. Monitor Fields -- 7.14. Motor Controllers -- 7.15. Screen Rooms -- 7.16. Review. 330 $aA practical new approach that brings together circuit theory and field theory for the practicing engineer To put it frankly, the traditional education of most engineers and scientists leaves them often unprepared to handle many of the practical problems they encounter. The Fields of Electronics: Understanding Electronics Using Basic Physics offers a highly original correction to this state of affairs. Most engineers learn circuit theory and field theory separately. Electromagnetic field theory is an important part of basic physics, but because it is a very mathematical subject, the connection to everyday problems is not emphasized. Circuit theory, on the other hand, is by its nature very practical. However, circuit theory cannot describe the nature of a facility, the interconnection of many pieces of hardware, or the power grid that interfaces each piece of hardware. The Fields of Electronics offers a unique approach that brings the physics and the circuit theory together into a seamless whole for today's practicing engineers.; With a clear focus on the real-world problems confronting the practitioner in the field, the book thoroughly details the principles that apply to: Capacitors, inductors, resistors, and transformers Utility power and circuit concepts Grounding and shielding Radiation Analog and digital signals Facilities and sites Written with very little mathematics, and requiring only some background in electronics, this book provides an eminently useful new way to understand the subject of electronics that will simplify the work of every novice, experienced engineer, and scientist. 606 $aElectronic circuits 606 $aElectromagnetic interference 606 $aElectromagnetic fields 606 $aElectronic apparatus and appliances 615 0$aElectronic circuits. 615 0$aElectromagnetic interference. 615 0$aElectromagnetic fields. 615 0$aElectronic apparatus and appliances. 676 $a621.381 700 $aMorrison$b Ralph$025799 801 0$bPQKB 906 $aBOOK 912 $a9910146082803321 996 $aThe Fields of Electronics: Understanding Electronics Using Basic Physics$91975379 997 $aUNINA