LEADER 05232nam 2200625Ia 450 001 9910146054103321 005 20170815105718.0 010 $a1-280-52018-3 010 $a9786610520183 010 $a3-527-60503-7 010 $a3-527-60262-3 035 $a(CKB)1000000000019242 035 $a(EBL)481599 035 $a(OCoLC)68913901 035 $a(SSID)ssj0000221177 035 $a(PQKBManifestationID)11197527 035 $a(PQKBTitleCode)TC0000221177 035 $a(PQKBWorkID)10161283 035 $a(PQKB)11004171 035 $a(MiAaPQ)EBC481599 035 $a(PPN)242884350 035 $a(EXLCZ)991000000000019242 100 $a20040610d2004 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aPhosgenations$b[electronic resource] $ea handbook /$fL. Cotarca, H. Eckert 210 $aWeinheim $cWiley-VCH$dc2004 215 $a1 online resource (670 p.) 300 $aDescription based upon print version of record. 311 $a3-527-29823-1 327 $aPhosgenations - A Handbook; Contents; Preface; 1 Contradictions; References; 2 Phosgenation Reagents; 2.1 Phosgene; 2.1.1 Conventional Manufacturing Processes; 2.1.2 Manufacturing Processes "On Demand of Consumer"; 2.2 Phosgene "Oligomers"; 2.2.1 Diphosgene; 2.2.2 Triphosgene; 2.2.2.1 Triphosgene as a Phosgene Equivalent or Phosgene Source; 2.2.2.2 Stability: Thermally and Chemically Induced Decomposition; 2.2.2.3 Preparation; 2.3 Other Phosgene Equivalents and Substitutes; 2.3.1 Oxalyl Chloride; 2.3.2 1,1-Carbonyldiimidazole; 2.3.3 Dimethyl Carbonate (DMC); 2.4 References 327 $a3 Evaluation of Phosgenation Reagents3.1 Definition; 3.2 Reactivity; 3.3 Physical Properties; 3.4 Physiological Data; 3.5 References; 4 Phosgenation Reactions; 4.1 Classification of Phosgenation Reactions; 4.2 Chloroformylation (Chlorocarbonylation); 4.2.1 Chloroformates (Chlorocarbonylation of Alcohols); 4.2.2 Carbamoyl Chlorides (Chlorocarbonylation of Amines); 4.2.2.1 Reactions with Primary Amines; 4.2.2.2 Reactions with Secondary Amines; 4.2.2.3 Reactions with Tertiary Amines; 4.2.2.4 Reactions with Amides; 4.3 Carbonylation; 4.3.1 Isocyanates; 4.3.1.1 Introduction 327 $a4.3.1.2 Aromatic Isocyanates4.3.1.3 Alkyl and Alkenyl Isocyanates; 4.3.1.4 Heterocyclic Isocyanates; 4.3.1.5 Isocyanates of Amino Acids; 4.3.1.6 Acyl Isocyanates; 4.3.1.7 Silane Isocyanates; 4.3.2 Carbamates; 4.3.2.1 Phosgene and Haloformates as Reagents; 4.3.2.2 Carbamates Prepared with Isocyanates or Carbamoyl Chlorides; 4.3.2.3 Carbamates Prepared with N,N ?-Carbonyldiimidazole (CDI); 4.3.2.4 Carbamates by Aminolysis of Carbonate or Dithiocarbonate Esters; 4.3.2.5 Enol Carbamates; 4.3.2.6 Carbamates from Isocyanides; 4.3.2.7 Potassium Carbonate as a Carbonylating Reagent 327 $a4.3.2.8 Carbamates Prepared with Acryloyl Azide4.3.2.9 Carbon Monoxide; 4.3.2.10 Carbon Dioxide; 4.3.2.11 Sodium Nitrite/HCl; 4.3.3 Carbonates; 4.3.3.1 Chloroformates; 4.3.3.2 Phosgene; 4.3.3.3 Diphosgene; 4.3.3.4 Triphosgene; 4.3.3.5 Carbonyldiimidazole (CDI); 4.3.3.6 Acyl Carbonates; 4.3.3.7 Carbonates (Interchanges); 4.3.3.8 Carbon Oxides, CO, CO(2), and MCO(3); 4.3.3.9 Ureas; 4.3.3.10 Enzyme Catalysis; 4.3.4 Ureas; 4.3.4.1 Phosgene and Symmetrical Phosgene Equivalents; 4.3.4.2 Unsymmetrical Phosgene Equivalents; 4.3.4.3 Carbon Monoxide; 4.3.4.4 Carbon Dioxide; 4.3.4.5 Organic Carbonates 327 $a4.3.4.6 Aminolysis of S-Methylthiocarbamates Prepared from Carbonimidodithioates4.3.4.7 Diiodosilane Method; 4.3.4.8 N-Alkylation of Simple Ureas; 4.3.4.9 The Reductive Amination of Aldehydes with Monoalkylureas; 4.3.4.10 Catalytic [Ru(PPh(3))(3)] Aminolysis of Formamides; 4.3.4.11 HY Zeolite HSZ-360 Catalyzed Aminolysis of Acetoacetanilides; 4.3.5 Reactions with Binucleophiles; 4.3.5.1 N,O- and N,S-Binucleophiles. Formation of Oxazolidin-2-ones and Thiazolidin-2-ones; 4.3.5.2 N,N-Binucleophiles. Formation of 2-Oxoimidazolidines; 4.3.5.3 O,O-Binucleophiles. Formation of Cyclic Carbonates 327 $a4.3.5.4 N,COOH Binucleophiles. Formation of N-Carboxyanhydrides of ?-Amino Acids 330 $aIn this manual, the authors compare the range of applications for phosgene with that of the alternative compounds, dealing in detail with the possible uses of diphosgene, triphosgene, carbon dioxide, organic carbonates, oxalylchloride and many other alternative materials used in synthesis. However, they clearly point out those cases where phosgene continues to have the advantage. The result is a mine of information for synthetic chemists working in industry and academia faced with the question of where the toxic phosgene can be replaced by an unproblematic compound - including the safety phosg 606 $aPhosgene$vHandbooks, manuals, etc 606 $aCarbonyl compounds 615 0$aPhosgene 615 0$aCarbonyl compounds. 676 $a661.06812 676 $a661.891 700 $aCotarca$b L$g(Livius)$0873818 701 $aEckert$b H$g(Heiner)$0365118 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910146054103321 996 $aPhosgenations$91950682 997 $aUNINA