LEADER 04456nam 22006615 450 001 9910144901103321 005 20250331125149.0 010 $a9783540481157 010 $a354048115X 024 7 $a10.1007/b72002 035 $a(CKB)1000000000234870 035 $a(SSID)ssj0000324380 035 $a(PQKBManifestationID)12071113 035 $a(PQKBTitleCode)TC0000324380 035 $a(PQKBWorkID)10305908 035 $a(PQKB)10865007 035 $a(DE-He213)978-3-540-48115-7 035 $a(MiAaPQ)EBC5579280 035 $a(Au-PeEL)EBL5579280 035 $a(OCoLC)1066179038 035 $a(MiAaPQ)EBC6877986 035 $a(Au-PeEL)EBL6877986 035 $a(PPN)155190695 035 $a(EXLCZ)991000000000234870 100 $a20121227d1999 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aLectures on Probability Theory and Statistics $eEcole d'Ete de Probabilites de Saint-Flour XXVII - 1997 /$fby J. Bertoin, F. Martinelli, Y. Peres ; edited by Pierre Bernard 205 $a1st ed. 1999. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1999. 215 $a1 online resource (X, 298 p.) 225 1 $aÉcole d'Été de Probabilités de Saint-Flour ;$v1717 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a9783540665939 311 08$a3540665935 327 $aFrom the contents: Subordinators: Examples and Applications: Foreword -- Elements on subordinators -- Regenerative property -- Asymptotic behaviour of last passage times -- Rates of growth of local time -- Geometric properties of regenerative sets -- Burgers equation with Brownian initial velocity -- Random covering -- Lévy processes -- Occupation times of a linear Brownian motion -- Lectures on Glauber Dynamics for Discrete Spin Models: Introduction -- Gibbs Measures of Lattice Spin Models -- The Glauber Dynamics -- One Phase Region -- Boundary Phase Transitions -- Phase Coexistence -- Glauber Dynamics for the Dilute Ising Model -- Probability on Trees: An Introductory Climb: Preface -- Basic Definitions and a Few Highlights -- Galton-Watson Trees -- General percolation on a connected graph -- The first-Moment method -- Quasi-independent Percolation -- The second Moment Method -- Electrical Networks -- Infinite Networks -- The Method of Random Paths -- Transience of Percolation Clusters -- Subperiodic Trees -- ..... 330 $aPart I, Bertoin, J.: Subordinators: Examples and Applications: Foreword.- Elements on subordinators.- Regenerative property.- Asymptotic behaviour of last passage times.- Rates of growth of local time.- Geometric properties of regenerative sets.- Burgers equation with Brownian initial velocity.- Random covering.- Lévy processes.- Occupation times of a linear Brownian motion.- Part II, Martinelli, F.: Lectures on Glauber Dynamics for Discrete Spin Models: Introduction.- Gibbs Measures of Lattice Spin Models.- The Glauber Dynamics.- One Phase Region.- Boundary Phase Transitions.- Phase Coexistence.- Glauber Dynamics for the Dilute Ising Model.- Part III, Peres, Yu.: Probability on Trees: An Introductory Climb: Preface.- Basic Definitions and a Few Highlights.- Galton-Watson Trees.- General percolation on a connected graph.- The first-Moment method.- Quasi-independent Percolation.- The second Moment Method.- Electrical Networks.- Infinite Networks.- The Method of Random Paths.- Transience of Percolation Clusters.- Subperiodic Trees.- The Random Walks RW (lambda) .- Capacity.-.Intersection-Equivalence.- Reconstruction for the Ising Model on a Tree,- Unpredictable Paths in Z and EIT in Z3.- Tree-Indexed Processes.- Recurrence for Tree-Indexed Markov Chains.- Dynamical Pecsolation.- Stochastic Domination Between Trees. 410 0$aÉcole d'Été de Probabilités de Saint-Flour ;$v1717 606 $aProbabilities 606 $aStatistics 606 $aProbability Theory 606 $aStatistical Theory and Methods 615 0$aProbabilities. 615 0$aStatistics. 615 14$aProbability Theory. 615 24$aStatistical Theory and Methods. 676 $a530.475 700 $aBernard$b P$g(Pierre),$f1944-$01258839 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910144901103321 996 $aLectures on probability theory and statistics$92917122 997 $aUNINA