LEADER 05076nam 22009015 450 001 9910144900003321 005 20211206214221.0 010 $a3-540-46586-3 024 7 $a10.1007/b72010 035 $a(CKB)1000000000234882 035 $a(SSID)ssj0000324337 035 $a(PQKBManifestationID)11912680 035 $a(PQKBTitleCode)TC0000324337 035 $a(PQKBWorkID)10313412 035 $a(PQKB)11516106 035 $a(DE-He213)978-3-540-46586-7 035 $a(MiAaPQ)EBC5595819 035 $a(PPN)155176706 035 $a(EXLCZ)991000000000234882 100 $a20121227d2000 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aLattice-Gas Cellular Automata and Lattice Boltzmann Models $eAn Introduction /$fby Dieter A. Wolf-Gladrow 205 $a1st ed. 2000. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2000. 215 $a1 online resource (X, 314 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1725 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-66973-6 320 $aIncludes bibliographical references (pages [275]-308) and index. 327 $aFrom the contents: Introduction: Preface; Overview -- The basic idea of lattice-gas cellular automata and lattice Boltzmann models. Cellular Automata: What are cellular automata?- A short history of cellular automata -- One-dimensional cellular automata -- Two-dimensional cellular automata -- Lattice-gas cellular automata: The HPP lattice-gas cellular automata -- The FHP lattice-gas cellular automata -- Lattice tensors and isotropy in the macroscopic limit -- Desperately seeking a lattice for simulations in three dimensions -- 5 FCHC -- The pair interaction (PI) lattice-gas cellular automata -- Multi-speed and thermal lattice-gas cellular automata -- Zanetti (staggered) invariants -- Lattice-gas cellular automata: What else? Some statistical mechanics: The Boltzmann equation -- Chapman-Enskog: From Boltzmann to Navier-Stokes -- The maximum entropy principle. Lattice Boltzmann Models: .... Appendix. 330 $aLattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1725 606 $aMathematical analysis 606 $aAnalysis (Mathematics) 606 $aLogic, Symbolic and mathematical 606 $aGlobal analysis (Mathematics) 606 $aManifolds (Mathematics) 606 $aNumerical analysis 606 $aApplied mathematics 606 $aEngineering mathematics 606 $aMechanics 606 $aAnalysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12007 606 $aMathematical Logic and Foundations$3https://scigraph.springernature.com/ontologies/product-market-codes/M24005 606 $aGlobal Analysis and Analysis on Manifolds$3https://scigraph.springernature.com/ontologies/product-market-codes/M12082 606 $aNumerical Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M14050 606 $aMathematical and Computational Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/T11006 606 $aClassical Mechanics$3https://scigraph.springernature.com/ontologies/product-market-codes/P21018 615 0$aMathematical analysis. 615 0$aAnalysis (Mathematics). 615 0$aLogic, Symbolic and mathematical. 615 0$aGlobal analysis (Mathematics) 615 0$aManifolds (Mathematics) 615 0$aNumerical analysis. 615 0$aApplied mathematics. 615 0$aEngineering mathematics. 615 0$aMechanics. 615 14$aAnalysis. 615 24$aMathematical Logic and Foundations. 615 24$aGlobal Analysis and Analysis on Manifolds. 615 24$aNumerical Analysis. 615 24$aMathematical and Computational Engineering. 615 24$aClassical Mechanics. 676 $a510 686 $a65M99$2msc 686 $a35C35$2msc 686 $a35Q30$2msc 700 $aWolf-Gladrow$b Dieter A$4aut$4http://id.loc.gov/vocabulary/relators/aut$065509 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910144900003321 996 $aLattice-gas cellular automata and lattice Boltzmann models$978808 997 $aUNINA