LEADER 05204nam 2200625 450 001 9910144829003321 005 20170810195509.0 010 $a1-282-78443-9 010 $a9786612784439 010 $a3-527-62180-6 010 $a3-527-62181-4 035 $a(CKB)1000000000687748 035 $a(EBL)481885 035 $a(OCoLC)609855475 035 $a(SSID)ssj0000354782 035 $a(PQKBManifestationID)11275385 035 $a(PQKBTitleCode)TC0000354782 035 $a(PQKBWorkID)10335778 035 $a(PQKB)10059661 035 $a(MiAaPQ)EBC481885 035 $a(EXLCZ)991000000000687748 100 $a20160819h20082008 uy 0 101 0 $ager 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aStatistical microhydrodynamics /$fEmmanuil G. Sinaiski and Leonid I. Zaichik 210 1$aWeinheim, [Germany] :$cWiley-VCH Verlag GmbH & Co. KGaA,$d2008. 210 4$d©2008 215 $a1 online resource (508 p.) 300 $aDescription based upon print version of record. 311 $a3-527-40656-5 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aStatistical Microhydrodynamics; Contents; Preface; Nomenclature; 1 Basic Concepts of the Probability Theory; 1.1 Events, Set of Events, and Probability; 1.2 Random Variables, Probability Distribution Function, Average Value, and Variance; 1.3 Generalized Functions; 1.4 Methods of Averaging; 1.5 Characteristic Functions; 1.6 Moments and Cumulants of Random Variables; 1.7 Correlation Functions; 1.8 Bernoulli, Poisson, and Gaussian Distributions; 1.9 Stationary Random Functions, Homogeneous Random Fields; 1.10 Isotropic Random Fields. Spectral Representation 327 $a1.11 Stochastic Processes. Markovian Processes. The Chapman-Kolmogorov Integral Equation1.12 The Chapman-Kolmogorov, Chapman-Feller, Fokker-Planck, and Liouville Differential Equations; 1.12.1 Derivation of the Differential Chapman-Kolmogorov Equation; 1.12.2 Discontinuous (""Jump"") Processes. The Kolmogorov-Feller Equation; 1.12.3 Diffusion Processes. The Fokker-Planck Equation; 1.12.4 Deterministic Processes. The Liouville Equation; 1.13 Stochastic Differential Equations. The Langevin Equation; 1.13.1 The Langevin Equation; 1.13.2 The Diffusion Equation 327 $a1.13.2.1 The Diffusion Equation with Chemical Reactions Taken into Account1.13.2.2 Brownian Motion of a Particle in a Hydrodynamic Medium; 1.14 Variational (Functional) Derivatives; 1.15 The Characteristic Functional; 2 Elements of Microhydrodynamics; 2.1 Motion of an Isolated Particle in a Quiescent Fluid; 2.2 Motion of an Isolated Particle in a Moving Fluid; 2.3 Motion of Two Particles in a Fluid; 2.3.1 Fluid is at Rest at the Infinity (v = 0); 2.3.2 Fluid is Moving at the Infinity (v 0); 2.4 Multi-Particle Motion; 2.5 Flow of a Fluid Through a Random Bed of Particles 327 $a3 Brownian Motion of Particles3.1 Random Walk of an Isolated Particle; 3.1.1 Isotropic Distribution; 3.1.2 Gaussian Distribution; 3.1.3 An Arbitrary Distribution ?(r) in the Limiting Case N»1; 3.2 Random Walk of an Ensemble of Particles; 3.3 Brownian Motion of a Free Particle in a Quiescent Fluid; 3.4 Brownian Motion of a Particle in an External Force Field; 3.5 The Smoluchowski Equation; 3.6 Brownian Motion of a Particle in a Moving Fluid; 3.7 Brownian Diffusion with Hydrodynamic Interactions; 3.8 Brownian Diffusion with Hydrodynamic Interactions and External Forces 327 $a3.8.1 High Peclet Numbers: Pe(ij)»13.8.2 Small Peclet Numbers, Pe(ij)«1; 3.9 Particle Sedimentation in a Monodisperse Dilute Suspension; 3.10 Particle Sedimentation in a Polydisperse Dilute Suspension, with Hydrodynamic and Molecular Interactions and Brownian Motion of Particles; 3.11 Transport Coefficients in Disperse Media; 3.11.1 Infinitely Dilute Suspension with Non-interacting Particles; 3.11.2 The Influence of Particle Interactions on Transport Coefficients; 3.12 Concentrated Disperse Media; 4 Turbulent Flow of Fluids; 4.1 General Information on Laminar and Turbulent Flows 327 $a4.2 The Momentum Equation for Viscous Incompressible Fluids 330 $aWritten by experienced practitioners and teachers, this concise and comprehensive treatment on particulate flow covers both the theory as well as applications and examples from the oil and chemical industry.Following a look at the basic concepts of probability theory, the authors goe on to examine the elements of microhydrodynamics, Brownian motion, and real liquids in turbulent flow.Of interest for lecturers in physics, theoretical physicists and chemists, as well as chemical engineers. 606 $aHydrodynamics$xStatistical methods 608 $aElectronic books. 615 0$aHydrodynamics$xStatistical methods. 676 $a532.5 676 $a532/.0527 700 $aSinai?skii?$b E?. G$g(E?mmanuil Genrikhovich),$0866154 702 $aZai?chik$b L. I$g(Leonid Isaakovich), 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910144829003321 996 $aStatistical microhydrodynamics$92016788 997 $aUNINA