LEADER 01264nam0-2200397---450 001 990005677060203316 005 20200420113032.0 035 $a000567706 035 $aUSA01000567706 035 $a(ALEPH)000567706USA01 035 $a000567706 100 $a20051019d1975----|||y0itaa50------ba 101 $afre 102 $afr 105 $a0 00||| 200 1 $a<> dynamique de l'Occident$fNorbert Elias$gtraduit de l'allemand par Pierre Kamnitzer 210 $aParis$cCalmann-Levy$dcopyr. 1975 215 $a328 p.$d21 cm 300 $aTrad. di: Uber den Prozess der Zivilisation. 454 $1001SA0015353$12001$aUber den Prozess der Zivilisation$fNorbert Elias.$915531 606 $aSTATO$xEVOLUZIONE$xEUROPA$xSEC. 11. / SEC. 18.$2F 620 $dPARIS 676 $a321 700 1$aELIAS,$bNorbert$0118152 702 1$aKAMNITZER,$bPierre 801 0$aIT$bSA$c20111219 899 $aDipar.to di Filosofia - Salerno$2SADF 912 $a990005677060203316 950 0$aDipar.to di Filosofia - Salerno$dDFFGS ELI$e633 FIL 951 $aFGS ELI$b633 FIL 959 $aBK 969 $aFIL 979 $c20121027$lUSA01$h1526 979 $c20121027$lUSA01$h1615 996 $aÜber den Prozess der Zivilisation$915531 997 $aUNISA LEADER 07899nam 22007575 450 001 9910144618203321 005 20210913133647.0 010 $a3-540-44489-0 024 7 $a10.1007/b98686 035 $a(CKB)1000000000231376 035 $a(SSID)ssj0000323475 035 $a(PQKBManifestationID)11237072 035 $a(PQKBTitleCode)TC0000323475 035 $a(PQKBWorkID)10312578 035 $a(PQKB)11600049 035 $a(DE-He213)978-3-540-44489-3 035 $a(MiAaPQ)EBC6297331 035 $a(MiAaPQ)EBC5585947 035 $a(Au-PeEL)EBL5585947 035 $a(OCoLC)793079088 035 $a(PPN)155224646 035 $a(EXLCZ)991000000000231376 100 $a20121227d2004 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aGeometric Aspects of Functional Analysis $eIsrael Seminar 2002-2003 /$fedited by Vitali D. Milman, Gideon Schechtman 205 $a1st ed. 2004. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2004. 215 $a1 online resource (X, 306 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1850 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-22360-6 327 $aIntro -- Title -- Preface -- The Start of GAFA Seminar Notes: Some Memories After 20 Years of Activity -- Contents -- 1 Introduction -- 2 Proof of Theorem 2 -- References -- 0 Introduction -- 1 Background -- 2 Hard Lefschetz Theorem for Even Valuations -- 3 The Case of Odd Valuations -- 4 Hard Lefschetz Theorem for Even Valuations from [A4] -- References -- References -- 1 Introduction -- 2 Decay of Norm for a Single Point -- 3 Decay of Diameter of a Convex Body -- 4 Remarks -- 5 Appendix -- References -- 1 A Construction of the Brenier Map -- 2 The Brunn-Minkowski Inequality -- 3 The Marton-Talagrand Inequality -- References -- 1 Introduction -- 2 The Approximation Argument -- 3 The Continuous Version of the Inequalities -- References -- 1 Introduction -- 2 Proof of the Inverse Brascamp-Lieb Inequality -- 3 The Brascamp-Lieb Inequality -- References -- References -- 1 Introduction -- 2 A Distributional Inequality -- 3 Application to Certain Lattice Schro?dinger Operators -- 4 A Continuum Model -- 5 Remark on the IDS of the 1-D Bernoulli Model with Weak Disorder -- References -- 1 Introduction -- 2 Symmetrization -- 2.1 Definition -- 2.2 The Effect of a Symmetrization on the Isotropic Constant -- 3 Use of an M -Ellipsoid -- 4 Proof of the Reduction to Bodies with Finite Volume Ratio -- 4.1 Controlling the Axes of an M -Ellipsoid -- 4.2 Finite Volume Ratio -- 5 The Isotropic Position and an M -Ellipsoid -- 6 Appendix: Concave Functions -- References -- References -- 1 Introduction -- 2 On a Geometric Inequality and the Extremal Properties of Euclidean Balls -- 3 Deviation from l2-Estimate -- 4 Random Cotype 2 Property -- 5 Spherical Uniform Distribution -- 6 Can We Check in a "Reasonable Time" that a Normed Space Is Very Far from Euclidean? -- References -- 1 Introduction. 327 $a2 Tight Embeddings of Euclidean Spaces in Symmetric Spaces and of Symmetric Spaces in Spaces -- 3 Complemented Subspaces of with Unconditional Bases -- References -- 1 Introduction -- 2 Uniqueness -- 3 Extremality Conditions -- 4 Different Bodies Have Different Maps -- 5 Various Optimization Problems -- References -- 0 Introduction -- 1 Definitions and Notations -- 2 The Minimal Volume Ellipsoid of a Symmetric Convex Body -- 3 Convex Bodies in M-Position -- 4 Main Results in the Non-symmetric Case -- 5 Technical Remarks and Improvements -- 6 The Symmetric Quasi-Convex Case -- References -- 1 Introduction -- 2 A General Scheme -- 3 Asymptotic Lower Bound for dist -- 4 The 2-Dimensional Case -- References -- 1 Introduction -- 2 Glivenko-Cantelli Classes and Learnability -- 2.1 The Classical Approach -- 2.2 Talagrand's Inequality for Empirical Processes -- 3 Uniform Measures of Complexity -- 3.1 Metric Entropy and the Combinatorial Dimension -- 3.2 Random Averages and the Combinatorial Dimension -- 3.3 Phase Transitions in GC Classes -- 3.4 Concentration of the Combinatorial Dimension -- 4 Learning Sample Complexity and Error Bounds -- 4.1 Error Bounds -- 4.2 Comparing Structures -- 5 Estimating the Localized Averages -- 5.1 Localized Averages -- 5.2 Data Dependent Bounds -- 5.3 Geometric Interpretation -- 6 Bernstein Type of Loss Classes -- 7 Classes of Linear Functionals -- 8 Concluding Remarks -- References -- 1 Introduction -- 2 Essential Uniqueness of M -Ellipsoids -- References -- 1 Frameworks and Models -- 1.1 Generalities -- 1.2 Interactions -- 1.3 Thermodynamic Limit of the Ground State Energy -- 2 Thermodynamic Limit in the Case of Short Range Interaction -- 3 Thermodynamic Limit for Mean Field Type Models -- 3.1 Weak Selfaveraging Property -- 3.2 Strong Selfaveraging Property of the Free Energy. 327 $a4 Two Simple Models with Phase Transitions -- 4.1 Kac Model -- 4.2 Spherical Model -- 4.3 Concluding Remarks on Phase Transitions -- References -- References -- 1 Introduction -- 2 Proof of the Theorem -- References -- Israel GAFA Seminar (2002-2004) -- PIMS Thematic Programme on Asymptotic Geometric Analysis at the University of British Columbia (Summer 2002) -- Conference on Convexity and Asymptotic Theory of Normed Spaces -- Concentration Period on Measure Transportation and Geometric Inequalities -- Conference on Phenomena of Large Dimensions -- Conference on Non-commutative Phenomena and Random Matrices -- Conference on Banach Spaces -- Banach Spaces and Convex Geometric Analysis (April, 2003) -- Paris GAFA Seminar (Summer 2003) -- GAFA Session Joint Meeting of the New Zealand Mathematical Society and Israel Mathematical Union (Wellington, February 2004). 330 $aThe Israeli GAFA seminar (on Geometric Aspect of Functional Analysis) during the years 2002-2003 follows the long tradition of the previous volumes. It reflects the general trends of the theory. Most of the papers deal with different aspects of the Asymptotic Geometric Analysis. In addition the volume contains papers on related aspects of Probability, classical Convexity and also Partial Differential Equations and Banach Algebras. There are also two expository papers on topics which proved to be very much related to the main topic of the seminar. One is Statistical Learning Theory and the other is Models of Statistical Physics. All the papers of this collection are original research papers. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1850 606 $aFunctional analysis 606 $aConvex geometry 606 $aDiscrete geometry 606 $aProbabilities 606 $aFunctional Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12066 606 $aConvex and Discrete Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21014 606 $aProbability Theory and Stochastic Processes$3https://scigraph.springernature.com/ontologies/product-market-codes/M27004 615 0$aFunctional analysis. 615 0$aConvex geometry. 615 0$aDiscrete geometry. 615 0$aProbabilities. 615 14$aFunctional Analysis. 615 24$aConvex and Discrete Geometry. 615 24$aProbability Theory and Stochastic Processes. 676 $a515.732 686 $a46-06$2msc 702 $aMilman$b Vitali D$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aSchechtman$b Gideon$4edt$4http://id.loc.gov/vocabulary/relators/edt 712 12$aIsrael Seminar on Geometrical Aspects of Functional Analysis$f(2002-2003) 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910144618203321 996 $aGeometric aspects of functional analysis$980193 997 $aUNINA