LEADER 00939nam0-2200337---450- 001 990009917200403321 005 20141120154416.0 010 $a0-19-815033-4 035 $a000991720 035 $aFED01000991720 035 $a(Aleph)000991720FED01 035 $a000991720 100 $a20141117d1996----km-y0itay50------ba 101 0 $aeng 102 $aUS 105 $ay-------001yy 200 1 $aWomen and law in late antiquity$fAntti Arjava 210 $aOxford$cClarendon Press$d1996 215 $aXI, 304 p.$d23 cm 610 0 $aDonne$aCondizione sociale$aSec. 4.-9. 610 0 $aDonne$aDiritto$aSec. 4.-9. 676 $a340.54$v21$zita 676 $a305.42$v21$zita 700 1$aArjava,$bAntti$0259308 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990009917200403321 952 $aXXIII E 35.45$b2499$fNAP02 959 $aNAP02 996 $aWomen and law in Late Antiquity$9708574 997 $aUNINA LEADER 02827nam 22006015 450 001 9910144600103321 005 20250729101854.0 010 $a3-540-40015-X 024 7 $a10.1007/b75857 035 $a(CKB)1000000000233175 035 $a(SSID)ssj0000323645 035 $a(PQKBManifestationID)12064872 035 $a(PQKBTitleCode)TC0000323645 035 $a(PQKBWorkID)10300706 035 $a(PQKB)11472141 035 $a(DE-He213)978-3-540-40015-8 035 $a(MiAaPQ)EBC3073230 035 $a(PPN)155189670 035 $a(EXLCZ)991000000000233175 100 $a20121227d2000 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aGrothendieck Duality and Base Change /$fby Brian Conrad 205 $a1st ed. 2000. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2000. 215 $a1 online resource (XII, 300 p.) 225 1 $aLecture Notes in Mathematics,$x1617-9692 ;$v1750 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a3-540-41134-8 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- Basic compatibilities -- Duality foundations -- Proof of main theorom -- Examples: Higher direct images. Curves -- Residues and cohomology with supports -- Trace map on smooth curves. 330 $aGrothendieck's duality theory for coherent cohomology is a fundamental tool in algebraic geometry and number theory, in areas ranging from the moduli of curves to the arithmetic theory of modular forms. Presented is a systematic overview of the entire theory, including many basic definitions and a detailed study of duality on curves, dualizing sheaves, and Grothendieck's residue symbol. Along the way proofs are given of some widely used foundational results which are not proven in existing treatments of the subject, such as the general base change compatibility of the trace map for proper Cohen-Macaulay morphisms (e.g., semistable curves). This should be of interest to mathematicians who have some familiarity with Grothendieck's work and wish to understand the details of this theory. 410 0$aLecture Notes in Mathematics,$x1617-9692 ;$v1750 606 $aGeometry, Algebraic 606 $aNumber theory 606 $aAlgebraic Geometry 606 $aNumber Theory 615 0$aGeometry, Algebraic. 615 0$aNumber theory. 615 14$aAlgebraic Geometry. 615 24$aNumber Theory. 676 $a515/.782 700 $aConrad$b Brian$4aut$4http://id.loc.gov/vocabulary/relators/aut$065658 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910144600103321 996 $aGrothendieck duality and base change$9378457 997 $aUNINA