LEADER 03793nam 22007455 450 001 9910144598403321 005 20210913160544.0 010 $a3-540-44576-5 024 7 $a10.1007/3-540-44576-5 035 $a(CKB)1000000000233209 035 $a(SSID)ssj0000324045 035 $a(PQKBManifestationID)12133614 035 $a(PQKBTitleCode)TC0000324045 035 $a(PQKBWorkID)10305168 035 $a(PQKB)10126227 035 $a(DE-He213)978-3-540-44576-0 035 $a(MiAaPQ)EBC3071851 035 $a(PPN)155223097 035 $a(EXLCZ)991000000000233209 100 $a20121227d2001 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aIntegrable Systems in the Realm of Algebraic Geometry /$fby Pol Vanhaecke 205 $a2nd ed. 2001. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2001. 215 $a1 online resource (XII, 264 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1638 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-42337-0 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- Integrable Hamiltonian systems on affine Poisson varietie: Affine Poisson varieties and their morphisms; Integrable Hamiltonian systems and their morphisms; Integrable Hamiltonian systems on other spaces -- Integrable Hamiltonian systems and symmetric products of curves: The systems and their integrability; The geometry of the level manifolds -- Interludium: the geometry of Abelian varieties: Divisors and line bundles; Abelian varieties; Jacobi varieties; Abelian surfaces of type (1,4) -- Algebraic completely integrable Hamiltonian systems: A.c.i. systems; Painlev analysis for a.c.i. systems; The linearization of two-dimensional a.c.i. systems; Lax equations -- The Mumford systems: Genesis; Multi-Hamiltonian structure and symmetries; The odd and the even Mumford systems; The general case -- Two-dimensional a.c.i. systems and applications: The genus two Mumford systems; Application: generalized Kummersurfaces; The Garnier potential; An integrable geodesic flow on SO(4);... 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1638 606 $aDynamics 606 $aErgodic theory 606 $aGlobal analysis (Mathematics) 606 $aManifolds (Mathematics) 606 $aGeometry, Algebraic 606 $aMathematical physics 606 $aDynamical Systems and Ergodic Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M1204X 606 $aGlobal Analysis and Analysis on Manifolds$3https://scigraph.springernature.com/ontologies/product-market-codes/M12082 606 $aAlgebraic Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M11019 606 $aTheoretical, Mathematical and Computational Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19005 615 0$aDynamics. 615 0$aErgodic theory. 615 0$aGlobal analysis (Mathematics) 615 0$aManifolds (Mathematics) 615 0$aGeometry, Algebraic. 615 0$aMathematical physics. 615 14$aDynamical Systems and Ergodic Theory. 615 24$aGlobal Analysis and Analysis on Manifolds. 615 24$aAlgebraic Geometry. 615 24$aTheoretical, Mathematical and Computational Physics. 676 $a516.353 686 $a14K20$2msc 700 $aVanhaecke$b Pol$4aut$4http://id.loc.gov/vocabulary/relators/aut$061070 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910144598403321 996 $aIntegrable systems in the realm of algebraic geometry$9258921 997 $aUNINA