LEADER 06956nam 2200577 450 001 9910144575003321 005 20221206094416.0 010 $a0-470-65215-2 010 $a1-281-22169-4 010 $a9786611221690 010 $a0-470-19909-1 010 $a0-470-19908-3 024 7 $a10.1002/9780470199091 035 $a(OCoLC)184983178 035 $a(EXLCZ)991000000000376989 100 $a20220506h20152007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aComputational intelligence in bioinformatics$fedited by Gary B. Fogel, David W. Corne and Yi Pan 210 1$a[Hoboken, New Jersey] :$cWiley-IEEE$d2007 210 2$a[Piscataqay, New Jersey] :$cIEEE Xplore,$d[2007] 215 $a1 online resource (377 p.) 225 1 $aIEEE press series on computational intelligence ;$v7 300 $aDescription based upon print version of record. 311 $a0-470-10526-7 320 $aIncludes bibliographical references and index. 327 $aPreface -- Contributors -- Part One Gene Expression Analysis and Systems Biology -- 1. Hybrid of Neural Classifi er and Swarm Intelligence in Multiclass Cancer Diagnosis with Gene Expression Signatures (Rui Xu, Georgios C. Anagnostopoulos, and Donald C. Wunsch II) -- 1.1 Introduction -- 1.2 Methods and Systems -- 1.3 Experimental Results -- 1.4 Conclusions -- 2. Classifying Gene Expression Profi les with Evolutionary Computation (Jin-Hyuk Hong and Sung-Bae Cho) -- 2.1 DNA Microarray Data Classifi cation -- 2.2 Evolutionary Approach to the Problem -- 2.3 Gene Selection with Speciated Genetic Algorithm -- 2.4 Cancer Classifi ction Based on Ensemble Genetic Programming -- 2.5 Conclusion -- 3. Finding Clusters in Gene Expression Data Using EvoCluster (Patrick C. H. Ma, Keith C. C. Chan, and Xin Yao) -- 3.1 Introduction -- 3.2 Related Work -- 3.3 Evolutionary Clustering Algorithm -- 3.4 Experimental Results -- 3.5 Conclusions -- 4. Gene Networks and Evolutionary Computation (Jennifer Hallinan) -- 4.1 Introduction -- 4.2 Evolutionary Optimization -- 4.3 Computational Network Modeling -- 4.4 Extending Reach of Gene Networks -- 4.5 Network Topology Analysis -- 4.6 Summary -- Part Two Sequence Analysis and Feature Detection -- 5. Fuzzy-Granular Methods for Identifying Marker Genes from Microarray Expression Data (Yuanchen He, Yuchun Tang, Yan-Qing Zhang, and Rajshekhar Sunderraman) -- 5.1 Introduction -- 5.2 Traditional Algorithms for Gene Selection -- 5.3 New Fuzzy-Granular-Based Algorithm for Gene Selection -- 5.4 Simulation -- 5.5 Conclusions -- 6. Evolutionary Feature Selection for Bioinformatics (Laetitia Jourdan, Clarisse Dhaenens, and El-Ghazali Talbi) -- 6.1 Introduction -- 6.2 Evolutionary Algorithms for Feature Selection -- 6.3 Feature Selection for Clustering in Bioinformatics -- 6.4 Feature Selection for Classifi cation in Bioinformatics -- 6.5 Frameworks and Data Sets -- 6.6 Conclusion -- 7. Fuzzy Approaches for the Analysis CpG Island Methylation Patterns (Ozy Sjahputera, Mihail Popescu, James M. Keller, and Charles W. Caldwell). 327 $a7.1 Introduction -- 7.2 Methods -- 7.3 Biological Signifi cance -- 7.4 Conclusions -- Part Three Molecular Structure and Phylogenetics -- 8. Protein-Ligand Docking with Evolutionary Algorithms(Rene Thomsen) -- 8.1 Introduction -- 8.2 Biochemical Background -- 8.3 The Docking Problem -- 8.4 Protein-Ligand Docking Algorithms -- 8.5 Evolutionary Algorithms -- 8.6 Effect of Variation Operators -- 8.7 Differential Evolution -- 8.8 Evaluating Docking Methods -- 8.9 Comparison between Docking Methods -- 8.10 Summary -- 8.11 Future Research Topics -- 9. RNA Secondary Structure Prediction Employing Evolutionary Algorithms (Kay C. Wiese, Alain A. Deschanes, and Andrew G. Hendriks) -- 9.1 Introduction -- 9.2 Thermodynamic Models -- 9.3 Methods -- 9.4 Results -- 9.5 Conclusion -- 10. Machine Learning Approach for Prediction of Human Mitochondrial Proteins (Zhong Huang, Xuheng Xu, and Xiaohua Hu) -- 10.1 Introduction -- 10.2 Methods and Systems -- 10.3 Results and Discussion -- 10.4 Conclusions -- 11. Phylogenetic Inference Using Evolutionary Algorithms(Clare Bates Congdon) -- 11.1 Introduction -- 11.2 Background in Phylogenetics -- 11.3 Challenges and Opportunities for Evolutionary Computation -- 11.4 One Contribution of Evolutionary Computation: Graphyl -- 11.5 Some Other Contributions of Evolutionary computation -- 11.6 Open Questions and Opportunities -- Part Four Medicine -- 12. Evolutionary Algorithms for Cancer Chemotherapy Optimization (John McCall, Andrei Petrovski, and Siddhartha Shakya) -- 12.1 Introduction -- 12.2 Nature of Cancer -- 12.3 Nature of Chemotherapy -- 12.4 Models of Tumor Growth and Response -- 12.5 Constraints on Chemotherapy -- 12.6 Optimal Control Formulations of Cancer Chemotherapy -- 12.7 Evolutionary Algorithms for Cancer Chemotherapy Optimization -- 12.8 Encoding and Evaluation -- 12.9 Applications of EAs to Chemotherapy Optimization Problems -- 12.10 Related Work -- 12.11 Oncology Workbench -- 12.12 Conclusion -- 13. Fuzzy Ontology-Based Text Mining System for Knowledge Acquisition, Ontology Enhancement, and Query Answering from Biomedical Texts (Lipika Dey and Muhammad Abulaish). 327 $a13.1 Introduction -- 13.2 Brief Introduction to Ontologies -- 13.3 Information Retrieval form Biological Text Documents: Related Work -- 13.4 Ontology-Based IE and Knowledge Enhancement System -- 13.5 Document Processor -- 13.6 Biological Relation Extractor -- 13.7 Relation-Based Query Answering -- 13.8 Evaluation of the Biological Relation Extraction Process -- 13.9 Biological Relation Characterizer -- 13.10 Determining Strengths of Generic Biological Relations -- 13.11 Enhancing GENIA to Fuzzy Relational Ontology -- 13.12 Conclusions and Future Work -- References -- Appendix Feasible Biological Relations -- Index. 330 $aCombining biology, computer science, mathematics, and statistics, the field of bioinformatics has become a hot new discipline with profound impacts on all aspects of biology and industrial application. Now, Computational Intelligence in Bioinformatics offers an introduction to the topic, covering the most relevant and popular CI methods, while also encouraging the implementation of these methods to readers' research. 606 $aBioinformática$2UAMSUB 606 $aInteligencia computacional$2UAMSUB 608 $aLibros electrónicos 610 $aInformática general 615 7$aBioinformática 615 7$aInteligencia computacional 676 $a572.028563 676 $a572.80285 701 $aCorne$b David$0845665 701 $aPan$b Yi$0296154 701 $aFogel$b Gary$f1968-$0845666 801 0$bCaBNVSL 801 1$bCaBNVSL 801 2$bCaBNVSL 906 $aBOOK 912 $a9910144575003321 996 $aComputational intelligence in bioinformatics$91887886 997 $aUNINA LEADER 01186nlm 2200265Ia 450 001 996602271203316 005 20240624123007.0 100 $a19840518d1676---- uy | 101 0 $aeng 102 $aUK 135 $adrcnu 200 1 $aEben-ezer, or, A small monument of great mercy$eappearing in the miraculous deliverance of William Okeley, William Adams, John Anthony, John Jephs, John -- Carpenter from the miserable slavery of Algiers : with the wonderful means of their escape in a boat of canvas, the great distress and utmost extremities which they endured at sea for six days ... and the following providences of God which brought them safe from England$fby me William Okeley 210 1 $aLondon$cPrinted for Nat. Ponder$d1676 215 $aTesto elettronico (PDF) ([28], 85, [1] p.) 230 $aBase dati testuale 300 $aRiproduzione dell'originale nella Harvard University Library. 606 0 $aSchiavitù$yAlgeria$2BNCF 676 $a306.362 700 1$aOKELEY,$bWilliam$0662123 801 0$aIT$bcba$cREICAT 912 $a996602271203316 959 $aEB 969 $aER 996 $aEben-ezer, or, A small monument of great mercy$92328594 997 $aUNISA