LEADER 05375nam 2200649Ia 450 001 9910144525003321 005 20170814180933.0 010 $a1-282-37946-1 010 $a9786612379468 010 $a0-470-69779-2 010 $a0-470-69799-7 035 $a(CKB)1000000000687331 035 $a(EBL)470652 035 $a(OCoLC)648759902 035 $a(SSID)ssj0000354189 035 $a(PQKBManifestationID)11251806 035 $a(PQKBTitleCode)TC0000354189 035 $a(PQKBWorkID)10313198 035 $a(PQKB)11131283 035 $a(MiAaPQ)EBC470652 035 $a(EXLCZ)991000000000687331 100 $a20070503d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aExtended finite element method for fracture analysis of structures$b[electronic resource] /$fSoheil Mohammadi 210 $aMalden, MA $cBlackwell Pub.$dc2008 215 $a1 online resource (282 p.) 300 $aDescription based upon print version of record. 311 $a1-4051-7060-3 320 $aIncludes bibliographical references and index. 327 $aEXTENDED FINITE ELEMENT METHOD; Contents; 2.5 SOLUTION PROCEDURES FOR K AND G; Dedication; Preface; Nomenclature; Chapter 1 Introduction; 1.1 ANALYSIS OF STRUCTURES; 1.2 ANALYSIS OF DISCONTINUITIES; 1.3 FRACTURE MECHANICS; 1.4 CRACK MODELLING; 1.4.1 Local and non-local models; 1.4.2 Smeared crack model; 1.4.3 Discrete inter-element crack; 1.4.4 Discrete cracked element; 1.4.5 Singular elements; 1.4.6 Enriched elements; 1.5 ALTERNATIVE TECHNIQUES; 1.6 A REVIEW OF XFEM APPLICATIONS; 1.6.1 General aspects of XFEM; 1.6.2 Localisation and fracture; 1.6.3 Composites; 1.6.4 Contact; 1.6.5 Dynamics 327 $a1.6.6 Large deformation/shells1.6.7 Multiscale; 1.6.8 Multiphase/solidification; 1.7 SCOPE OF THE BOOK; Chapter 2 Fracture Mechanics,a Review; 2.1 INTRODUCTION; 2.2 BASICS OF ELASTICITY; 2.2.1 Stress -strain relations; 2.2.2 Airy stress function; 2.2.3 Complex stress functions; 2.3 BASICS OF LEFM; 2.3.1 Fracture mechanics; 2.3.2 Circular hole; 2.3.3 Elliptical hole; 2.3.4 Westergaard analysis of a sharp crack; 2.4 STRESS INTENSITY FACTOR, K; 2.4.1 Definition of the stress intensity factor; 2.4.2 Examples of stress intensity factors for LEFM; 2.4.3 Griffith theories of strength and energy 327 $a2.4.4 Brittle material2.4.5 Quasi-brittle material; 2.4.6 Crack stability; 2.4.7 Fixed grip versus fixed load; 2.4.8 Mixed mode crack propagation; 2.5.1 Displacement extrapolation/correlation method; 2.5.2 Mode I energy release rate; 2.5.3 Mode I stiffness derivative/virtual crack model; 2.5.4 Two virtual crack extensions for mixed mode cases; 2.5.5 Single virtual crack extension based on displacement decomposition; 2.5.6 Quarter point singular elements; 2.6 ELASTOPLASTIC FRACTURE MECHANICS (EPFM); 2.6.1 Plastic zone; 2.6.2 Crack tip opening displacements (CTOD); 2.6.3 J integral 327 $a2.6.4 Plastic crack tip fields2.6.5 Generalisation of J; 2.7 NUMERICAL METHODS BASED ON THE J INTEGRAL; 2.7.1 Nodal solution; 2.7.2 General finite element solution; 2.7.3 Equivalent domain integral (EDI)method; 2.7.4 Interaction integral method; Chapter 3 Extended Finite Element Method for Isotropic Problems; 3.1 INTRODUCTION; 3.2 A REVIEW OF XFEM DEVELOPMENT; 3.3 BASICS OF FEM; 3.3.1 Isoparametric finite elements, a short review; 3.3.2 Finite element solutions for fracture mechanics; 3.4 PARTITION OF UNITY; 3.5 ENRICHMENT; 3.5.1 Intrinsic enrichment; 3.5.2 Extrinsic enrichment 327 $a3.5.3 Partition of unity finite element method3.5.4 Generalised finite element method; 3.5.5 Extended finite element method; 3.5.6 Hp-clouds enrichment; 3.5.7 Generalisation of the PU enrichment; 3.5.8 Transition from standard to enriched approximation; 3.6 ISOTROPIC XFEM; 3.6.1 Basic XFEM approximation; 3.6.2 Signed distance function; 3.6.3 Modelling strong discontinuous fields; 3.6.4 Modelling weak discontinuous fields; 3.6.5 Plastic enrichment; 3.6.6 Selection of nodes for discontinuity enrichment; 3.6.7 Modelling the crack; 3.7 DISCRETIZATION AND INTEGRATION; 3.7.1 Governing equation 327 $a3.7.2 XFEM discretization 330 $aThis important textbook provides an introduction to the concepts of the newly developed extended finite element method (XFEM) for fracture analysis of structures, as well as for other related engineering applications.One of the main advantages of the method is that it avoids any need for remeshing or geometric crack modelling in numerical simulation, while generating discontinuous fields along a crack and around its tip. The second major advantage of the method is that by a small increase in number of degrees of freedom, far more accurate solutions can be obtained. The method has recen 606 $aFracture mechanics 606 $aFinite element method 608 $aElectronic books. 615 0$aFracture mechanics. 615 0$aFinite element method. 676 $a518.25 676 $a624.1/76 686 $aBAU 154f$2stub 686 $aUF 3150$2rvk 700 $aMohammadi$b S$g(Soheil)$0475363 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910144525003321 996 $aExtended finite element method for fracture analysis of structures$9247276 997 $aUNINA