LEADER 00820nam 2200277 450 001 9910507510303321 005 20211122111352.0 010 $a978-1-913652-51-7 100 $a20211118d2020----kmuy0itay5050 ba 101 0 $aeng 102 $aGB 105 $aa 001yy 200 1 $aBacterial Viruses$eexploitation for biocontrol and therapeutics$fedited by Aidan Coffey and Colin Buttimer. 210 $aNorfolk$cCaister Academic Press$d2020 215 $aX, 692 p.$cill.$d26 cm 610 0 $aVirus batterici 676 $a579.26$v23$zita 702 1$aCoffey,$bAidan 702 1$aButtimer,$bColin 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9910507510303321 952 $a60 579.26 COFA 2020$b690/2021$fFACBC 959 $aFAGBC 996 $aBacterial Viruses$92046214 997 $aUNINA LEADER 05342nam 2200649Ia 450 001 9910144342703321 005 20170810192838.0 010 $a1-280-72286-X 010 $a9786610722860 010 $a3-527-60878-8 010 $a3-527-60859-1 035 $a(CKB)1000000000376188 035 $a(EBL)481747 035 $a(OCoLC)78205030 035 $a(SSID)ssj0000201010 035 $a(PQKBManifestationID)11184271 035 $a(PQKBTitleCode)TC0000201010 035 $a(PQKBWorkID)10232319 035 $a(PQKB)10805776 035 $a(MiAaPQ)EBC481747 035 $a(EXLCZ)991000000000376188 100 $a20060804d2006 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aMembrane technology in the chemical industry$b[electronic resource] /$fedited by Suzana Pereira Nunes and Klaus-Vktor Peinemann 205 $a2nd Rev. and extended ed. 210 $aWeinheim $cWiley-VCH$d2006 215 $a1 online resource (356 p.) 300 $aPrevious ed.: 2001. 311 $a3-527-31316-8 320 $aIncludes bibliographical references and index. 327 $aMembrane Technology; Contents; Preface; List of Contributors; Part I Membrane Materials and Membrane Preparation; 1 Introduction; 2 Membrane Market; 3 Membrane Preparation; 3.1 Phase Inversion; 4 Presently Available Membranes for Liquid Separation; 4.1 Membranes for Reverse Osmosis; 4.2 Membranes for Nanofiltration; 4.2.1 Solvent-resistant Membranes for Nanofiltration; 4.2.2 NF Membranes Stable in Extreme pH Conditions; 4.3 Membranes for Ultrafiltration; 4.3.1 Polysulfone and Polyethersulfone; 4.3.2 Poly(vinylidene fluoride); 4.3.3 Polyetherimide; 4.3.4 Polyacrylonitrile; 4.3.5 Cellulose 327 $a4.3.6 Solvent-resistant Membranes for Ultrafiltration4.4 Membranes for Microfiltration; 4.4.1 Polypropylene and Polyethylene; 4.4.2 Poly(tetrafluorethylene); 4.4.3 Polycarbonate and Poly(ethylene terephthalate); 5 Surface Modification of Membranes; 5.1 Chemical Oxidation; 5.2 Plasma Treatment; 5.3 Classical Organic Reactions; 5.4 Polymer Grafting; 6 Membranes for Fuel Cells; 6.1 Perfluorinated Membranes; 6.2 Nonfluorinated Membranes; 6.3 Polymer Membranes for High Temperatures; 6.4 Organic-Inorganic Membranes for Fuel Cells; 7 Gas Separation with Membranes; 7.1 Introduction 327 $a7.2 Materials and Transport Mechanisms7.2.1 Organic Polymers; 7.2.2 Background; 7.2.3 Polymers for Commercial Gas-separation Membranes; 7.2.4 Ultrahigh Free Volume Polymers; 7.2.5 Inorganic Materials for Gas-separation Membranes; 7.2.6 Carbon Membranes; 7.2.7 Perovskite-type Oxide Membranes for Air Separation; 7.2.8 Mixed-matrix Membranes; 7.3 Basic Process Design; Acknowledgments; References; Part II Current Application and Perspectives; 1 The Separation of Organic Vapors from Gas Streams by Means of Membranes; Summary; 1.1 Introduction; 1.2 Historical Background 327 $a1.3 Membranes for Organic Vapor Separation1.3.1 Principles; 1.3.2 Selectivity; 1.3.3 Temperature and Pressure; 1.3.4 Membrane Modules; 1.4 Applications; 1.4.1 Design Criteria; 1.4.2 Off-gas and Process Gas Treatment; 1.4.2.1 Gasoline Vapor Recovery; 1.4.2.2 Polyolefin Production Processes; 1.5 Applications at the Threshold of Commercialization; 1.5.1 Emission Control at Petrol Stations; 1.5.2 Natural Gas Treatment; 1.5.3 Hydrogen/Hydrocarbon Separation; 1.6 Conclusions and Outlook; References; 2 Gas-separation Membrane Applications; 2.1 Introduction; 2.2 Membrane Application Development 327 $a2.2.1 Membrane Selection2.2.2 Membrane Form; 2.2.3 Membrane Module Geometry; 2.2.4 Compatible Sealing Materials; 2.2.5 Module Manufacture; 2.2.6 Pilot or Field Demonstration; 2.2.7 Process Design; 2.2.8 Membrane System; 2.2.9 Beta Site; 2.2.10 Cost/Performance; 2.3 Commercial Gas-separation Membrane Applications; 2.3.1 Hydrogen Separations; 2.3.2 Helium Separations; 2.3.3 Nitrogen Generation; 2.3.4 Acid Gas-Separations; 2.3.5 Gas Dehydration; 2.4 Developing Membrane Applications; 2.4.1 Oxygen and Oxygen-enriched Air; 2.4.2 Nitrogen Rejection from Natural Gas; 2.4.3 Nitrogen-enriched Air (NEA) 327 $aReferences 330 $aMembrane Technology - a clean and energy saving alternative to traditional/conventional processes.Developed from a useful laboratory technique to a commercial separation technology, today it has widespread and rapidly expanding use in the chemical industry. It has established applications in areas such as hydrogen separation and recovery of organic vapors from process gas streams, and selective transport of organic solvents, and it is opening new perspectives for catalytic conversion in membrane reactors. Membrane technology provides a unique solution for industrial waste treatment and 606 $aMembrane filters 606 $aMembrane separation 608 $aElectronic books. 615 0$aMembrane filters. 615 0$aMembrane separation. 676 $a660.2842 676 $a660.28424 701 $aNunes$b S. P$g(Suzana Pereira)$0855337 701 $aPeinemann$b K. V$g(Klaus-Viktor)$0855336 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910144342703321 996 $aMembrane technology in the chemical industry$92170868 997 $aUNINA