LEADER 05324nam 2200649Ia 450 001 9910144331103321 005 20170810192827.0 010 $a1-281-76426-4 010 $a9786611764265 010 $a3-527-61378-1 010 $a3-527-61379-X 035 $a(CKB)1000000000376216 035 $a(EBL)482119 035 $a(OCoLC)261340566 035 $a(SSID)ssj0000149737 035 $a(PQKBManifestationID)11147466 035 $a(PQKBTitleCode)TC0000149737 035 $a(PQKBWorkID)10239622 035 $a(PQKB)11789716 035 $a(MiAaPQ)EBC482119 035 $a(EXLCZ)991000000000376216 100 $a19990621d1999 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aEtching in microsystem technology$b[electronic resource] /$fMichael Ko?hler ; translated by Antje Wiegand 210 $aWeinheim ;$aNew York $cWiley-VCH$dc1999 215 $a1 online resource (386 p.) 300 $aDescription based upon print version of record. 311 $a3-527-29561-5 320 $aIncludes bibliographical references ([345]-360) and index. 327 $aEtching in Microsystem Technology; Preface; Contents; Table of Contents; Symbols; Abbreviations; 1 Introduction; 2 Distinctive Features of Microtechnical Etching; 2.1 Etching as a Fashioning Method; 2.1.1 Limits of Additive Microtechnical Pattern Generation; 2.1.2 Subtractive Pattern Generation; 2.2 Etch Rate and Selectivity; 2.2.1 Etch Rate and Time Request; 2.2.2 The Etching Process; 2.2.3 Transport Processes; 2.2.4 Process Velocities; 2.3. Isotropic and Anisotropic Etching; 2.4 Edge Geometry and Roughness; 2.4.1 Deviations from Ideal Geometry; 2.4.2 Flank Geometry in Isotropic Etching 327 $a2.4.3 Fabrication of Low Slope Angles by Isotropic Etching2.4.4 Flank Geometries in Anisotropic Etching; 2.4.5 Setting the Flank Geometry by Partial Anisotropic Etching; 2.5 Accuracy; 2.6 Monitoring of Etching Processes; 3 Wet-Chemical Etching Methods; 3.1 Etching at the Interface Solid-Liquid; 3.2 Preparation of the Surface; 3.2.1 Surface Condition; 3.2.2 Cleaning; 3.2.3 Digital Etching; 3.3 Etching of Dielectric Materials; 3.3.1 Wet Etching by Physical Dissolution; 3.3.2 Wet-Chemical Etching of Non-Metals; 3.4 Etching of Metals and Semiconductors; 3.4.1 Outer-Currentless Etching 327 $a3.4.2 Selectivity in Outer-Currentless Etching3.4.3 Etching of Multilayer Systems Forming Local Elements; 3.4.4 Geometry-Dependent Etch Rates; 3.4.5 Geometry-Dependent Passivation; 3.4.6 Electrochemical Etching; 3.4.7 Photochemical Wet Etching; 3.4.8 Photoelectrochemical Etching(PEC); 3.5 Crystallographic Etching; 3.5.1 Chemical Wet-Etching of Monocrystalline Surfaces; 3.5.2 Anisotropic Etching of Monocrystalline Metals; 3.5.3 Anisotropic Etching of Silicon; 3.5.4 Anisotropic Electrochemical and Photoelectrochemical Etching; 3.5.5 Porous Silicon 327 $a3 S.6 Anisotropic Etching of Compound Semiconductors3.6 Preparation of Free-Standing Micropatterns; 3.6.1 Surface Micromachining; 3.6.2 Bulk Micromachining; 3.6.3 Porous Silicon as Sacrificial Material; 4 Dry-Etching Methods; 4.1 Removal at the Interface Solid-Gas; 4.2 Plasma-Free Etching in the Gas Phase; 4.2.1 Plasma-Free Dry-Etching with Reactive Gases; 4.2.2 Photo-Assisted Dry Etching with Reactive Gases; 4.2.3 Directly Writing Micropatterning by Laser Scanning Etching; 4.2.4 Electron-Beam-Assisted Vapour Etching; 4.3 Plasma Etching Methods 327 $a4.3.1 Material Removal by Reactions with Plasma Species4.3.2 Plasma Generation; 4.3.3 Plasma Etching in the Barrel Reactor; 4.3.4 Plasma Etching in the Down-Stream Reactor; 4.3.5 Plasma Etching in the Planar-Plate Reactor; 4.3.6 Magnetic-Field-Enhanced Plasma Etching; 4.3.7 Plasma Etching at Low Pressure and High Ion Density; 4.3.8 Forming of Etch Structures in Plasma Etching; 4.3.9 Geometry Influence on Plasma Etching; 4.3.10 Plasma Jet Etching (PJE); 4.3.11 Applications of Plasma Etching; 4.4 Etchig Methods with Energized Particles; 4.4.1 Sputter-Etching; 4.4.2 Reactive Ion Etching (RIE) 327 $a4.4.3 Magnetic-Field-Enhanced Reactive Ion Etching (MERIE) 330 $aMicrocomponents and microdevices are increasingly finding application in everyday life. The specific functions of all modern microdevices depend strongly on the selection and combination of the materials used in their construction, i.e., the chemical and physical solid-state properties of these materials, and their treatment. The precise patterning of various materials, which is normally performed by lithographic etching processes, is a prerequisite for the fabrication of microdevices.The microtechnical etching of functional patterns is a multidisciplinary area, the basis for the etching p 606 $aMasks (Electronics) 606 $aMicrolithography 606 $aPlasma etching 608 $aElectronic books. 615 0$aMasks (Electronics) 615 0$aMicrolithography. 615 0$aPlasma etching. 676 $a621.381531 676 $a660 700 $aKo?hler$b J. M$g(J. Michael),$f1956-$0427318 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910144331103321 996 $aEtching in microsystem technology$92230630 997 $aUNINA LEADER 01178nam2 2200289 i 450 001 VAN00070359 005 20240806100550.72 010 $a01-350-4135-X 100 $a20090601d1998 |0itac50 ba 101 $aeng 102 $aUS 105 $a|||| ||||| 200 1 $aˆ2: ‰Detection theory$fSteven M. Kay 210 $aEnglewood Cliffs$cPrentice Hall$d1998 215 $aXIV, 560 p.$d26 cm 461 1$1001VAN00070355$12001 $aFundamentals of statistical signal processing$fSteven M. Kay$1210 $aUpper Saddle River$cPrentice-Hall$1215 $avolumi$d24 cm$v2 620 $dEnglewood Cliffs$3VANL000086 700 1$aKay$bSteven M.$3VANV045748$028097 712 $aPrentice Hall $3VANV110738$4650 790 1$aKay, S.M.$zKay, Steven M.$3VANV062955 790 1$aKay, S. M.$zKay, Steven M.$3VANV062956 801 $aIT$bSOL$c20240906$gRICA 899 $aBIBLIOTECA DEL DIPARTIMENTO DI INGEGNERIA$1IT-CE0100$2VAN05 912 $aVAN00070359 950 $aBIBLIOTECA DEL DIPARTIMENTO DI INGEGNERIA$d05PREST D 776 $e05 5347 20090601 $sBuono 996 $aDetection theory$91223903 997 $aUNICAMPANIA