LEADER 04086nam 22007935 450 001 9910144025803321 005 20200701161246.0 010 $a3-540-45169-2 024 7 $a10.1007/b11963 035 $a(CKB)1000000000212118 035 $a(SSID)ssj0000323753 035 $a(PQKBManifestationID)11241059 035 $a(PQKBTitleCode)TC0000323753 035 $a(PQKBWorkID)10303298 035 $a(PQKB)10200284 035 $a(DE-He213)978-3-540-45169-3 035 $a(MiAaPQ)EBC3088518 035 $a(PPN)155186086 035 $a(EXLCZ)991000000000212118 100 $a20121227d2003 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aHierarchical Neural Networks for Image Interpretation /$fby Sven Behnke 205 $a1st ed. 2003. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2003. 215 $a1 online resource (XIII, 227 p.) 225 1 $aLecture Notes in Computer Science,$x0302-9743 ;$v2766 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-40722-7 320 $aIncludes bibliographical references and index. 327 $aI. Theory -- Neurobiological Background -- Related Work -- Neural Abstraction Pyramid Architecture -- Unsupervised Learning -- Supervised Learning -- II. Applications -- Recognition of Meter Values -- Binarization of Matrix Codes -- Learning Iterative Image Reconstruction -- Face Localization -- Summary and Conclusions. 330 $aHuman performance in visual perception by far exceeds the performance of contemporary computer vision systems. While humans are able to perceive their environment almost instantly and reliably under a wide range of conditions, computer vision systems work well only under controlled conditions in limited domains. This book sets out to reproduce the robustness and speed of human perception by proposing a hierarchical neural network architecture for iterative image interpretation. The proposed architecture can be trained using unsupervised and supervised learning techniques. Applications of the proposed architecture are illustrated using small networks. Furthermore, several larger networks were trained to perform various nontrivial computer vision tasks. 410 0$aLecture Notes in Computer Science,$x0302-9743 ;$v2766 606 $aComputers 606 $aNeurosciences 606 $aAlgorithms 606 $aArtificial intelligence 606 $aOptical data processing 606 $aPattern perception 606 $aComputation by Abstract Devices$3https://scigraph.springernature.com/ontologies/product-market-codes/I16013 606 $aNeurosciences$3https://scigraph.springernature.com/ontologies/product-market-codes/B18006 606 $aAlgorithm Analysis and Problem Complexity$3https://scigraph.springernature.com/ontologies/product-market-codes/I16021 606 $aArtificial Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/I21000 606 $aImage Processing and Computer Vision$3https://scigraph.springernature.com/ontologies/product-market-codes/I22021 606 $aPattern Recognition$3https://scigraph.springernature.com/ontologies/product-market-codes/I2203X 615 0$aComputers. 615 0$aNeurosciences. 615 0$aAlgorithms. 615 0$aArtificial intelligence. 615 0$aOptical data processing. 615 0$aPattern perception. 615 14$aComputation by Abstract Devices. 615 24$aNeurosciences. 615 24$aAlgorithm Analysis and Problem Complexity. 615 24$aArtificial Intelligence. 615 24$aImage Processing and Computer Vision. 615 24$aPattern Recognition. 676 $a006.37 700 $aBehnke$b Sven$4aut$4http://id.loc.gov/vocabulary/relators/aut$0564937 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910144025803321 996 $aHierarchical neural networks for image interpretation$9954166 997 $aUNINA