LEADER 04318nam 22008895 450 001 9910143970503321 005 20251113190629.0 010 $a1-281-92068-1 010 $a9786611920685 010 $a3-540-77676-1 024 7 $a10.1007/978-3-540-77676-5 035 $a(CKB)1000000000546078 035 $a(EBL)3063752 035 $a(SSID)ssj0000291245 035 $a(PQKBManifestationID)11213759 035 $a(PQKBTitleCode)TC0000291245 035 $a(PQKBWorkID)10249143 035 $a(PQKB)10712624 035 $a(DE-He213)978-3-540-77676-5 035 $a(MiAaPQ)EBC3063752 035 $a(MiAaPQ)EBC6351867 035 $a(PPN)132864010 035 $a(EXLCZ)991000000000546078 100 $a20100301d2008 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aChaos in Structural Mechanics /$fby Jan Awrejcewicz, Vadim Anatolevich Krys'ko 205 $a1st ed. 2008. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2008. 215 $a1 online resource (423 p.) 225 1 $aUnderstanding Complex Systems,$x1860-0840 300 $aDescription based upon print version of record. 311 08$a3-642-09645-X 311 08$a3-540-77675-3 320 $aIncludes bibliographical references and index. 327 $aTheory of Non-homogeneous Shells -- Static Instability of Rectangular Plates -- Vibrations of Rectangular Shells -- Dynamic Loss of Stability of Rectangular Shells -- Stability of a Closed Cylindrical Shell Subjected to an Axially Non-symmetrical Load -- Composite Shells -- Interaction of Elastic Shells and a Moving Body -- Chaotic Vibrations of Sectoria Shells -- Scenarios of Transition from Harmonic to Chaotic Motion -- Dynamics of Closed Flexible Cylindrical Shells -- Controlling Time-Spatial Chaos of Cylindrical Shells -- Chaotic Vibrations of Flexible Rectangular Shells -- Determination of Three-layered Non-linear Uncoupled Beam Dynamics with Constraints -- Bifurcation and Chaos of Dissipative Non-linear Mechanical Systems of Multi-layer Sandwich Beams -- Nonlinear Vibrations of the Euler-Bernoulli Beam Subjected to Transversal Load and Impact Actions. 330 $aThis volume introduces and reviews novel theoretical approaches to modeling strongly nonlinear behaviour of either individual or interacting structural mechanical units such as beams, plates and shells or composite systems thereof. The approach draws upon the well-established fields of bifurcation theory and chaos and emphasizes the notion of control and stability of objects and systems the evolution of which is governed by nonlinear ordinary and partial differential equations. Computational methods, in particular the Bubnov-Galerkin method, are thus described in detail. 410 0$aUnderstanding Complex Systems,$x1860-0840 606 $aMultibody systems 606 $aVibration 606 $aMechanics, Applied 606 $aSystem theory 606 $aEngineering mathematics 606 $aEngineering$xData processing 606 $aControl theory 606 $aMathematical physics 606 $aMultibody Systems and Mechanical Vibrations 606 $aComplex Systems 606 $aMathematical and Computational Engineering Applications 606 $aSystems Theory, Control 606 $aTheoretical, Mathematical and Computational Physics 615 0$aMultibody systems. 615 0$aVibration. 615 0$aMechanics, Applied. 615 0$aSystem theory. 615 0$aEngineering mathematics. 615 0$aEngineering$xData processing. 615 0$aControl theory. 615 0$aMathematical physics. 615 14$aMultibody Systems and Mechanical Vibrations. 615 24$aComplex Systems. 615 24$aMathematical and Computational Engineering Applications. 615 24$aSystems Theory, Control. 615 24$aTheoretical, Mathematical and Computational Physics. 676 $a624.17015118 700 $aAwrejcewicz$b J$g(Jan),$059397 702 $aKrys?ko$b V. A$g(Vadim Anatol?evich),$f1937- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910143970503321 996 $aChaos in structural mechanics$92430773 997 $aUNINA