LEADER 03332nam 2200625 450 001 9910143970503321 005 20210216161423.0 010 $a1-281-92068-1 010 $a9786611920685 010 $a3-540-77676-1 024 7 $a10.1007/978-3-540-77676-5 035 $a(CKB)1000000000546078 035 $a(EBL)3063752 035 $a(SSID)ssj0000291245 035 $a(PQKBManifestationID)11213759 035 $a(PQKBTitleCode)TC0000291245 035 $a(PQKBWorkID)10249143 035 $a(PQKB)10712624 035 $a(DE-He213)978-3-540-77676-5 035 $a(MiAaPQ)EBC3063752 035 $a(MiAaPQ)EBC6351867 035 $a(PPN)132864010 035 $a(EXLCZ)991000000000546078 100 $a20210216d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aChaos in structural mechanics /$fJ. Awrejcewicz, V. A. Krysko 205 $a1st ed. 2008. 210 1$aBerlin, Germany :$cSpringer,$d[2008] 210 4$dİ2008 215 $a1 online resource (423 p.) 225 1 $aSpringer complexity 300 $aDescription based upon print version of record. 311 $a3-540-77675-3 320 $aIncludes bibliographical references and index. 327 $aTheory of Non-homogeneous Shells -- Static Instability of Rectangular Plates -- Vibrations of Rectangular Shells -- Dynamic Loss of Stability of Rectangular Shells -- Stability of a Closed Cylindrical Shell Subjected to an Axially Non-symmetrical Load -- Composite Shells -- Interaction of Elastic Shells and a Moving Body -- Chaotic Vibrations of Sectoria Shells -- Scenarios of Transition from Harmonic to Chaotic Motion -- Dynamics of Closed Flexible Cylindrical Shells -- Controlling Time-Spatial Chaos of Cylindrical Shells -- Chaotic Vibrations of Flexible Rectangular Shells -- Determination of Three-layered Non-linear Uncoupled Beam Dynamics with Constraints -- Bifurcation and Chaos of Dissipative Non-linear Mechanical Systems of Multi-layer Sandwich Beams -- Nonlinear Vibrations of the Euler-Bernoulli Beam Subjected to Transversal Load and Impact Actions. 330 $aThis volume introduces and reviews novel theoretical approaches to modeling strongly nonlinear behaviour of either individual or interacting structural mechanical units such as beams, plates and shells or composite systems thereof. The approach draws upon the well-established fields of bifurcation theory and chaos and emphasizes the notion of control and stability of objects and systems the evolution of which is governed by nonlinear ordinary and partial differential equations. Computational methods, in particular the Bubnov-Galerkin method, are thus described in detail. 410 0$aSpringer complexity. 606 $aChaotic behavior in systems 606 $aStructural analysis (Engineering)$xMathematical models 615 0$aChaotic behavior in systems. 615 0$aStructural analysis (Engineering)$xMathematical models. 676 $a624.17015118 700 $aAwrejcewicz$b J$g(Jan),$059397 702 $aKrys?ko$b V. A$g(Vadim Anatol?evich),$f1937- 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910143970503321 996 $aChaos in structural mechanics$92430773 997 $aUNINA