LEADER 04139nam 22008415 450 001 9910143888103321 005 20200706031251.0 010 $a3-540-36381-5 024 7 $a10.1007/3-540-36381-5 035 $a(CKB)1000000000211891 035 $a(SSID)ssj0000325694 035 $a(PQKBManifestationID)11912732 035 $a(PQKBTitleCode)TC0000325694 035 $a(PQKBWorkID)10265395 035 $a(PQKB)11132450 035 $a(DE-He213)978-3-540-36381-1 035 $a(MiAaPQ)EBC3071853 035 $a(PPN)155171801 035 $a(EXLCZ)991000000000211891 100 $a20121227d2002 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aPlan-Based Control of Robotic Agents $eImproving the Capabilities of Autonomous Robots /$fby Michael Beetz 205 $a1st ed. 2002. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2002. 215 $a1 online resource (XI, 194 p.) 225 1 $aLecture Notes in Artificial Intelligence ;$v2554 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-00335-5 320 $aIncludes bibliographical references. 327 $aOverview of the Control System -- Plan Representation for Robotic Agents -- Probabilistic Hybrid Action Models -- Learning Structured Reactive Navigation Plans -- Plan-Based Robotic Agents -- Conclusions. 330 $aRobotic agents, such as autonomous office couriers or robot tourguides, must be both reliable and efficient. Thus, they have to flexibly interleave their tasks, exploit opportunities, quickly plan their course of action, and, if necessary, revise their intended activities. This book makes three major contributions to improving the capabilities of robotic agents: - first, a plan representation method is introduced which allows for specifying flexible and reliable behavior - second, probabilistic hybrid action models are presented as a realistic causal model for predicting the behavior generated by modern concurrent percept-driven robot plans - third, the system XFRMLEARN capable of learning structured symbolic navigation plans is described in detail. 410 0$aLecture Notes in Artificial Intelligence ;$v2554 606 $aRobotics 606 $aAutomation 606 $aArtificial intelligence 606 $aComputer science 606 $aComputer networks 606 $aComputers, Special purpose 606 $aAutomatic control 606 $aMechatronics 606 $aRobotics and Automation$3https://scigraph.springernature.com/ontologies/product-market-codes/T19020 606 $aArtificial Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/I21000 606 $aComputer Science, general$3https://scigraph.springernature.com/ontologies/product-market-codes/I00001 606 $aComputer Communication Networks$3https://scigraph.springernature.com/ontologies/product-market-codes/I13022 606 $aSpecial Purpose and Application-Based Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/I13030 606 $aControl, Robotics, Mechatronics$3https://scigraph.springernature.com/ontologies/product-market-codes/T19000 615 0$aRobotics. 615 0$aAutomation. 615 0$aArtificial intelligence. 615 0$aComputer science. 615 0$aComputer networks. 615 0$aComputers, Special purpose. 615 0$aAutomatic control. 615 0$aMechatronics. 615 14$aRobotics and Automation. 615 24$aArtificial Intelligence. 615 24$aComputer Science, general. 615 24$aComputer Communication Networks. 615 24$aSpecial Purpose and Application-Based Systems. 615 24$aControl, Robotics, Mechatronics. 676 $a629.892 700 $aBeetz$b Michael$4aut$4http://id.loc.gov/vocabulary/relators/aut$0542874 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910143888103321 996 $aPlan-based control of robotic agents$9955102 997 $aUNINA