LEADER 04568nam 22006014a 450 001 9910143739803321 005 20180612233816.0 010 $a0-470-02075-X 010 $a1-280-44874-1 010 $a9786610448746 010 $a0-470-02074-1 035 $a(CKB)1000000000357247 035 $a(EBL)257677 035 $a(OCoLC)71626104 035 $a(SSID)ssj0000239021 035 $a(PQKBManifestationID)12044580 035 $a(PQKBTitleCode)TC0000239021 035 $a(PQKBWorkID)10234526 035 $a(PQKB)11459621 035 $a(MiAaPQ)EBC257677 035 $a(EXLCZ)991000000000357247 100 $a20051103d2006 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aRobust industrial control systems$b[electronic resource] $eoptimal design approach for polynomial systems /$fMichael J. Grimble 210 $aChichester ;$aHoboken, NJ $cWiley$dc2006 215 $a1 online resource (700 p.) 300 $aDescription based upon print version of record. 311 $a0-470-02073-3 320 $aIncludes bibliographical references and index. 327 $aRobust Industrial Control Systems; Contents; Preface; Acknowledgements; 1 Introduction to Optimal and Robust Control; 1.1 Introduction; 1.1.1 Optimality, Feedback and Robustness; 1.1.2 High-integrity and Fault-tolerant Control Systems; 1.1.3 Self-healing Control Systems; 1.1.4 Fault Monitoring and Detection; 1.1.5 Adaptive versus Robust Control; 1.1.6 Artificial Intelligence, Neural Networks and Fuzzy Control; 1.1.7 Discrete-time Systems; 1.2 The H2 and H-infinity Spaces and Norms; 1.2.1 Graphical Interpretation of the H-infiinity Norm 327 $a1.2.2 Terms Used in H-infinity Robust Control Systems Design1.3 Introduction to H-infinity Control Design; 1.3.1 Properties of H-infinity Robust Control Design; 1.3.2 Comparison of H-infinity and H2/LQG Controllers; 1.3.3 Relationships between Classical Design and H-infinity Robust Control; 1.3.4 H2 and H-infinity Design and Relationship to PID Control; 1.3.5 H-infinity Polynomial Systems Synthesis Theory; 1.4 State-space Modelling and Synthesis Theory; 1.4.1 State-space Solution of Discrete-time H-infinity Control Problem; 1.4.2 H-infinity Control Design Objectives 327 $a1.4.3 State-feedback Control Solution1.4.4 State-feedback Control Problem: Cross-product Costing Case; 1.4.5 State-space Solution of Discrete-time H-infinity Filtering Problem; 1.4.6 Bounded Real Lemma; 1.4.7 Output Feedback H-infinity Control Problem; 1.5 Introduction to H2 or LQG Polynomial Synthesis; 1.5.1 System Description; 1.5.2 Cost Function and Solution; 1.5.3 Minimisation of the Performance Criterion; 1.5.4 Solution of the Diophantine Equations and Stability; 1.5.5 H2 /LQG Design Examples; 1.6 Benchmarking; 1.6.1 Restricted Structure Benchmarking 327 $a2.3.1 Solution of the Dual-criterion Minimisation Problem2.3.2 Theorem Summarising LQG Controller; 2.3.3 Remarks on the Equations and Solution; 2.3.4 Design Guidelines; 2.3.5 Controller Implementation; 2.3.6 LQG Ship-steering Autopilot Application; 2.4 LQG Controller with Robust Weighting Function; 2.4.1 Youla Parameterisation; 2.4.2 Cost Function with Robust Weighting Function; 2.4.3 Solution of the Dual-criterion Problem with Robust Weighting; 2.4.4 Summary of H2 /LQG Synthesis Problem with Robust Weighting; 2.4.5 Comments on the Solution; 2.5 Introduction to the Standard System Model 327 $a2.5.1 Standard System Model 330 $aRobust Industrial Control Systems: Optimal Design Approach for Polynomial Systems presents a comprehensive introduction to the use of frequency domain and polynomial system design techniques for a range of industrial control and signal processing applications. The solution of stochastic and robust optimal control problems is considered, building up from single-input problems and gradually developing the results for multivariable design of the later chapters. In addition to cataloguing many of the results in polynomial systems needed to calculate industrial controllers and filters, basic 606 $aProcess control$xAutomation 608 $aElectronic books. 615 0$aProcess control$xAutomation. 676 $a629.8312 676 $a670.42/7 676 $a670.427 700 $aGrimble$b Michael J$0491140 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910143739803321 996 $aRobust industrial control systems$91574894 997 $aUNINA