LEADER 05132nam 2200613 a 450 001 9910143678003321 005 20170809164711.0 010 $a1-280-82227-9 010 $a9786610822270 010 $a0-470-11688-9 010 $a0-470-11687-0 035 $a(CKB)1000000000357028 035 $a(EBL)287300 035 $a(OCoLC)476040312 035 $a(SSID)ssj0000097776 035 $a(PQKBManifestationID)11121625 035 $a(PQKBTitleCode)TC0000097776 035 $a(PQKBWorkID)10120269 035 $a(PQKB)10812202 035 $a(MiAaPQ)EBC287300 035 $a(EXLCZ)991000000000357028 100 $a20060822d2007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAdvanced modeling in computational electromagnetic compatibility$b[electronic resource] /$fDragan Poljak 210 $aHoboken, N.J. $cWiley-Interscience$dc2007 215 $a1 online resource (516 p.) 300 $aDescription based upon print version of record. 311 $a0-470-03665-6 320 $aIncludes bibliographical references and index. 327 $aADVANCED MODELING IN COMPUTATIONAL ELECTROMAGNETIC COMPATIBILITY; CONTENTS; PREFACE; PART I: FUNDAMENTAL CONCEPTS IN COMPUTATIONAL ELECTROMAGNETIC COMPATIBILITY; 1. Introduction to Computational Electromagnetics and Electromagnetic Compatibility; 1.1 Historical Note on Modeling in Electromagnetics; 1.2 Electromagnetic Compatibility and Electromagnetic Interference; 1.2.1 EMC Computational Models and Solution Methods; 1.2.2 Classification of EMC Models; 1.2.3 Summary Remarks on EMC Modeling; 1.3 References; 2. Fundamentals of Electromagnetic Theory; 2.1 Differential Form of Maxwell Equations 327 $a2.2 Integral Form of Maxwell Equations2.3 Maxwell Equations for Moving Media; 2.4 The Continuity Equation; 2.5 Ohm's Law; 2.6 Conservation Law in the Electromagnetic Field; 2.7 The Electromagnetic Wave Equations; 2.8 Boundary Relationships for Discontinuities in Material Properties; 2.9 The Electromagnetic Potentials; 2.10 Boundary Relationships for Potential Functions; 2.11 Potential Wave Equations; 2.11.1 Coulomb Gauge; 2.11.2 Diffusion Gauge; 2.11.3 Lorentz Gauge; 2.12 Retarded Potentials; 2.13 General Boundary Conditions and Uniqueness Theorem; 2.14 Electric and Magnetic Walls 327 $a2.15 The Lagrangian Form of Electromagnetic Field Laws2.15.1 Lagrangian Formulation and Hamilton Variational Principle; 2.15.2 Lagrangian Formulation and Hamilton Variational Principle in Electromagnetics; 2.16 Complex Phasor Notation of Time-Harmonic Electromagnetic Fields; 2.16.1 Poyinting Theorem for Complex Phasors; 2.16.2 Complex Phasor Form of Electromagnetic Wave Equations; 2.16.3 The Retarded Potentials for the Time-Harmonic Fields; 2.17 Transmission Line Theory; 2.17.1 Field Coupling Using Transmission Line Models 327 $a2.17.2 Derivation of Telegrapher's Equation for the Two-Wire Transmission Line2.18 Plane Wave Propagation; 2.19 Radiation; 2.19.1 Radiation Mechanism; 2.19.2 Hertzian Dipole; 2.19.3 Fundamental Antenna Parameters; 2.19.4 Linear Antennas; 2.20 References; 3 Introduction to Numerical Methods in Electromagnetics; 3.1 Analytical Versus Numerical Methods; 3.1.1 Frequency and Time Domain Modeling; 3.2 Overview of Numerical Methods: Domain, Boundary, and Source Simulation; 3.2.1 Modeling of Problems via the Domain Methods: FDM and FEM 327 $a3.2.2 Modeling of Problems via the BEM: Direct and Indirect Approach3.3 The Finite Difference Method; 3.3.1 One-Dimensional FDM; 3.3.2 Two-Dimensional FDM; 3.4 The Finite Element Method; 3.4.1 Basic Concepts of FEM; 3.4.2 One-Dimensional FEM; 3.4.3 Two-Dimensional FEM; 3.5 The Boundary Element Method; 3.5.1 Integral Equation Formulation; 3.5.2 Boundary Element Discretization; 3.5.3 Computational Example for 2D Static Problem; 3.6 References; 4 Static Field Analysis; 4.1 Electrostatic Fields; 4.2 Magnetostatic Fields; 4.3 Modeling of Static Field Problems 327 $a4.3.1 Integral Equations in Electrostatics Using Sources 330 $aThis text combines the fundamentals of electromagnetics with numerical modeling to tackle a broad range of current electromagnetic compatibility (EMC) problems, including problems with lightning, transmission lines, and grounding systems. It sets forth a solid foundation in the basics before advancing to specialized topics, and allows readers to develop their own EMC computational models for applications in both research and industry. 606 $aElectromagnetic compatibility$xMathematical models 606 $aElectromagnetic compatibility$xData processing 608 $aElectronic books. 615 0$aElectromagnetic compatibility$xMathematical models. 615 0$aElectromagnetic compatibility$xData processing. 676 $a621.38224 700 $aPoljak$b D$g(Dragan)$0882822 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910143678003321 996 $aAdvanced modeling in computational electromagnetic compatibility$91972209 997 $aUNINA