LEADER 06661nam 22007695 450 001 9910143627003321 005 20251116234158.0 010 $a3-540-44670-2 024 7 $a10.1007/3-540-44670-2 035 $a(CKB)1000000000211554 035 $a(SSID)ssj0000322401 035 $a(PQKBManifestationID)11233025 035 $a(PQKBTitleCode)TC0000322401 035 $a(PQKBWorkID)10301294 035 $a(PQKB)11154685 035 $a(DE-He213)978-3-540-44670-5 035 $a(MiAaPQ)EBC3073239 035 $a(PPN)155205927 035 $a(BIP)7336020 035 $a(EXLCZ)991000000000211554 100 $a20121227d2001 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aCryptography and Lattices $eInternational Conference, CaLC 2001, Providence, RI, USA, March 29-30, 2001. Revised Papers /$fedited by Joseph H. Silverman 205 $a1st ed. 2001. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2001. 215 $a1 online resource (VIII, 224 p.) 225 1 $aLecture Notes in Computer Science,$x0302-9743 ;$v2146 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a3-540-42488-1 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aAn Overview of the Sieve Algorithm for the Shortest Lattice Vector Problem -- Low Secret Exponent RSA Revisited -- Finding Small Solutions to Small Degree Polynomials -- Fast Reduction of Ternary Quadratic Forms -- Factoring Polynomials and 0?1 Vectors -- Approximate Integer Common Divisors -- Segment LLL-Reduction of Lattice Bases -- Segment LLL-Reduction with Floating Point Orthogonalization -- The Insecurity of Nyberg-Rueppel and Other DSA-Like Signature Schemes with Partially Known Nonces -- Dimension Reduction Methods for Convolution Modular Lattices -- Improving Lattice Based Cryptosystems Using the Hermite Normal Form -- The Two Faces of Lattices in Cryptology -- A 3-Dimensional Lattice Reduction Algorithm -- The Shortest Vector Problem in Lattices with Many Cycles -- Multisequence Synthesis over an Integral Domain. 330 $aThesearetheproceedingsofCaLC2001,the'rstconferencedevotedtocr- tographyandlattices. Wehavelongbelievedthattheimportanceoflattices andlatticereductionincryptography,bothforcryptographicconstructionand cryptographicanalysis,meritsagatheringdevotedtothistopic. Theenthusiastic responsethatwereceivedfromtheprogramcommittee,theinvitedspeakers,the manypeoplewhosubmittedpapers,andthe90registeredparticipantsamply con'rmedthewidespreadinterestinlatticesandtheircryptographicappli- tions. WethankeveryonewhoseinvolvementmadeCaLCsuchasuccessfulevent; inparticularwethankNatalieJohnson,LarryLarrivee,DoreenPappas,andthe BrownUniversityMathematicsDepartmentfortheirassistanceandsupport. March2001 Je'reyHo'stein,JillPipher,JosephSilverman VI Preface Organization CaLC2001wasorganizedbytheDepartmentofMathematicsatBrownUniv- sity. Theprogramchairsexpresstheirthankstotheprogramcommiteeandthe additionalexternalrefereesfortheirhelpinselectingthepapersforCaLC2001. TheprogramchairswouldalsoliketothankNTRUCryptosystemsforproviding ?nancialsupportfortheconference. Program Commitee DonCoppersmith IBMResearch Je'reyHo'stein(co-chair), BrownUniversityandNTRUCryptosystems ArjenLenstra Citibank,USA PhongNguyen ENS AndrewOdlyzko AT&TLabsResearch JosephH. Silverman(co-chair), BrownUniversityandNTRUCryptosystems External Referees AliAkhavi,GlennDurfee,NickHowgrave-Graham,DanieleMicciancio Sponsoring Institutions NTRUCryptosystems,Inc. ,Burlington,MA Table of Contents An Overveiw of the Sieve Algorithm forthe Shortest Lattice Vector Problem 1 Miklos Ajtai, Ravi Kumar, and Dandapani Sivakumar Low Secret Exponent RSA Revisited ::::::::::::::::::::::::::::::::: 4 Johannes Bl¨ omer and Alexander May Finding Small Solutions to Small Degree Polynomials::::::::::::::::::: 20 Don Coppersmith Fast Reduction of Ternary Quadratic Forms::::::::::::::::::::::::::: 32 Friedrich Eisenbrand and Gunt ¨ er Rote Factoring Polynomialsand 0-1 Vectors:::::::::::::::::::::::::::::::: 45 Mark van Hoeij Approximate Integer Common Divisors::::::::::::::::::::::::::::::: 51 Nick Howgrave-Graham Segment LLL-Reduction of Lattice Bases ::::::::::::::::::::::::::::: 67 Henrik Koy and Claus Peter Schnorr Segment LLL-Reduction with Floating Point Orthogonalization:::::::::: 81 Henrik Koy and Claus Peter Schnorr TheInsecurity ofNyberg-Rueppel andOther DSA-LikeSignatureSchemes with Partially Known Nonces:::::::::::::::::::::::::::::::::::::::: 97 Edwin El Mahassni, Phong Q. Nguyen, and Igor E. Shparlinski Dimension Reduction Methods for Convolution Modular Lattices :::::::: 110 Alexander May and Joseph H. Silverman Improving Lattice Based Cryptosystems Using the Hermite Normal Form : 126 Daniele Micciancio The Two Faces of Lattices in Cryptology:::::::::::::::::::::::::::::: 146 Phong Q. 410 0$aLecture Notes in Computer Science,$x0302-9743 ;$v2146 606 $aData encryption (Computer science) 606 $aComputers 606 $aAlgorithms 606 $aComputer science?Mathematics 606 $aCryptology$3https://scigraph.springernature.com/ontologies/product-market-codes/I28020 606 $aComputation by Abstract Devices$3https://scigraph.springernature.com/ontologies/product-market-codes/I16013 606 $aAlgorithm Analysis and Problem Complexity$3https://scigraph.springernature.com/ontologies/product-market-codes/I16021 606 $aDiscrete Mathematics in Computer Science$3https://scigraph.springernature.com/ontologies/product-market-codes/I17028 606 $aSymbolic and Algebraic Manipulation$3https://scigraph.springernature.com/ontologies/product-market-codes/I17052 606 $aAlgorithms$3https://scigraph.springernature.com/ontologies/product-market-codes/M14018 615 0$aData encryption (Computer science) 615 0$aComputers. 615 0$aAlgorithms. 615 0$aComputer science?Mathematics. 615 14$aCryptology. 615 24$aComputation by Abstract Devices. 615 24$aAlgorithm Analysis and Problem Complexity. 615 24$aDiscrete Mathematics in Computer Science. 615 24$aSymbolic and Algebraic Manipulation. 615 24$aAlgorithms. 676 $a005.8/2 702 $aSilverman$b Joseph H$4edt$4http://id.loc.gov/vocabulary/relators/edt 712 12$aCaLC 2001 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910143627003321 996 $aCryptography and Lattices$92018022 997 $aUNINA