LEADER 02619oam 2200625I 450 001 9910453490203321 005 20200520144314.0 010 $a0-415-45918-4 010 $a1-135-00147-2 010 $a0-203-92946-2 010 $a1-135-19087-9 010 $a1-135-19080-1 024 7 $a10.4324/9780203929469 035 $a(CKB)2550000001167334 035 $a(EBL)1573334 035 $a(SSID)ssj0001157417 035 $a(PQKBManifestationID)11632229 035 $a(PQKBTitleCode)TC0001157417 035 $a(PQKBWorkID)11227183 035 $a(PQKB)10837871 035 $a(MiAaPQ)EBC1573334 035 $a(Au-PeEL)EBL1573334 035 $a(CaPaEBR)ebr10813493 035 $a(CaONFJC)MIL548744 035 $a(OCoLC)865332088 035 $a(OCoLC)864551968 035 $a(EXLCZ)992550000001167334 100 $a20180331d2005 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aEncyclopedia of international relations and global politics /$fedited by Martin Griffiths 210 1$aLondon ;$aNew York :$cRoutledge,$d2005. 215 $a1 online resource (931 p.) 300 $aDescription based upon print version of record. 311 $a0-415-31160-8 311 $a1-306-17493-7 320 $aIncludes bibliographical references and index. 327 $aCover; Title Page; Copyright Page; Table of Contents; consultant editors; contributors; introduction; acknowledgments; list of entries; entries A to Z; A; B; C; D; E; F; G; H; I; J; K; L; M; N; O; P; R; S; T; U; W; Z; index 330 $aThe study of international relations has changed rapidly in recent years. Firstly as a consequence of major political and economic change - the end of the cold war and the fall of communism, the resurgence of nationalism, terrorism and forms of fundamentalism, globalization - and secondly, linked with these developments, because of the vitality of the discipline, with ongoing debates on the fundamental paradigms for the understanding of international relations and the emergence of the perspectives of feminism, postmodernism, constructivism and critical theory.The Routledge Encycl 606 $aWorld politics$vEncyclopedias 608 $aElectronic books. 615 0$aWorld politics 676 $a320.03 676 $a320/.03 701 $aGriffiths$b Martin$f1961-$0144572 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910453490203321 996 $aEncyclopedia of international relations and global politics$92254841 997 $aUNINA LEADER 05432nam 22006614a 450 001 9910143580303321 005 20170815122228.0 010 $a1-280-28697-0 010 $a9786610286973 010 $a0-470-35884-X 010 $a0-471-76410-8 010 $a0-471-76409-4 035 $a(CKB)1000000000355162 035 $a(EBL)242880 035 $a(OCoLC)194221907 035 $a(SSID)ssj0000218210 035 $a(PQKBManifestationID)11186880 035 $a(PQKBTitleCode)TC0000218210 035 $a(PQKBWorkID)10212967 035 $a(PQKB)10332080 035 $a(MiAaPQ)EBC242880 035 $a(PPN)170214176 035 $a(EXLCZ)991000000000355162 100 $a20050518d2006 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aPartial differential equations and the finite element method$b[electronic resource] /$fPavel S?oli?n 210 $aHoboken, N.J. $cWiley-Interscience$dc2006 215 $a1 online resource (505 p.) 225 1 $aPure and applied mathematics 300 $aDescription based upon print version of record. 311 $a0-471-72070-4 320 $aIncludes bibliographical references (p. 461-467) and index. 327 $aPartial Differential Equations and the Finite Element Method; CONTENTS; List of Figures; LIST OF FIGURES; List of Tables; LIST OF TABLES; Preface; Acknowledgments; 1 Partial Differential Equations; 1.1 Selected general properties; 1.1.1 Classification and examples; 1.1.2 Hadamard's well-posedness; 1.1 Jacques Salomon Hadamard ( 1865-1963).; 1.2 Isolines of the solution u(x, t ) of Burger's equation.; 1.1.3 General existence and uniqueness results; 1.1.4 Exercises; 1.2 Second-order elliptic problems; 1.2.1 Weak formulation of a model problem 327 $a1.3 Johann Peter Gustav Lejeune Dirichlet (1805-1859).1.2.2 Bilinear forms, energy norm, and energetic inner product; 1.2.3 The Lax-Milgram lemma; 1.2.4 Unique solvability of the model problem; 1.2.5 Nonhomogeneous Dirichlet boundary conditions; 1.2.6 Neumann boundary conditions; 1.2.7 Newton (Robin) boundary conditions; 1.2.8 Combining essential and natural boundary conditions; 1.2.9 Energy of elliptic problems; 1.2.10 Maximum principles and well-posedness; 1.4 Maximum principle for the Poisson equation in 2D.; 1.2.11 Exercises; 1.3 Second-order parabolic problems 327 $a1.3.1 Initial and boundary conditions1.3.2 Weak formulation; 1.3.3 Existence and uniqueness of solution; 1.3.4 Exercises; 1.4 Second-order hyperbolic problems; 1.4.1 Initial and boundary conditions; 1.4.2 Weak formulation and unique solvability; 1.4.3 The wave equation; 1.4.4 Exercises; 1.5 First-order hyperbolic problems; 1.5.1 Conservation laws; 1.5.2 Characteristics; 1.5.3 Exact solution to linear first-order systems; 1.5.4 Riemann problem; 1.5 Georg Friedrich Bernhard Riemann (1826-1866).; 1.6 Propagation of discontinuity in the solution of the Riemann problem. 327 $a1.5.5 Nonlinear flux and shock formation1.5.6 Exercises; 1.7 Formation of shock in the solution u(x, t ) of Burger's equation.; 2 Continuous Elements for 1D Problems; 2.1 The general framework; 2.1.1 The Galerkin method; 2.1 Boris Grigorievich Galerkin (1871-1945).; 2.1.2 Orthogonality of error and Ce?a's lemma; 2.1.3 Convergence of the Galerkin method; 2.1.4 Ritz method for symmetric problems; 2.1.5 Exercises; 2.2 Lowest-order elements; 2.2.1 Model problem; 2.2.2 Finite-dimensional subspace Vn C V; 2.2.3 Piecewise-affine basis functions; 2.2.4 The system of linear algebraic equations 327 $a2.2 Example of a basis function vi of the space Vn2.2.5 Element-by-element assembling procedure; 2.3 Tridiagonal stiffness matrix Sn.; 2.2.6 Refinement and convergence; 2.2.7 Exercises; 2.3 Higher-order numerical quadrature; 2.3.1 Gaussian quadrature rules; 2.4 Carl Friedrich Gauss (1777-1855).; 2.3.2 Selected quadrature constants; 2.1 Gaussian quadrature on Ka, order 2k - 1 = 3.; 2.2 Gaussian quadrature on Ka, order 2k - 1 = 5.; 2.3 Gaussian quadrature on Ka, order 2k - 1 = 7.; 2.4 Gaussian quadrature on Ka, order 2k - 1 = 9.; 2.5 Gaussian quadrature on Ka, order 2k - 1 = 11. 327 $a2.3.3 Adaptive quadrature 330 $aA systematic introduction to partial differentialequations and modern finite element methods for their efficient numerical solutionPartial Differential Equations and the Finite Element Method provides a much-needed, clear, and systematic introduction to modern theory of partial differential equations (PDEs) and finite element methods (FEM). Both nodal and hierachic concepts of the FEM are examined. Reflecting the growing complexity and multiscale nature of current engineering and scientific problems, the author emphasizes higher-order finite element methods such as the spectral 410 0$aPure and applied mathematics (John Wiley & Sons : Unnumbered) 606 $aDifferential equations, Partial$xNumerical solutions 606 $aFinite element method 615 0$aDifferential equations, Partial$xNumerical solutions. 615 0$aFinite element method. 676 $a518.64 676 $a518/.64 700 $aS?olin$b Pavel$0599763 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910143580303321 996 $aPartial differential equations and the finite element method$91021502 997 $aUNINA