LEADER 05564nam 22007094a 450 001 9910143577603321 005 20170810185052.0 010 $a1-280-27538-3 010 $a9786610275380 010 $a0-470-24511-5 010 $a0-471-70517-9 010 $a0-471-70516-0 035 $a(CKB)1000000000355716 035 $a(EBL)227548 035 $a(OCoLC)173031545 035 $a(SSID)ssj0000198581 035 $a(PQKBManifestationID)11187605 035 $a(PQKBTitleCode)TC0000198581 035 $a(PQKBWorkID)10183506 035 $a(PQKB)10156193 035 $a(MiAaPQ)EBC227548 035 $a(EXLCZ)991000000000355716 100 $a20040527d2005 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMass spectrometry in biophysics$b[electronic resource] $econformation and dynamics of biomolecules /$fIgor A. Kaltashov, Stephen J. Eyles 210 $aHoboken, N.J. $cJohn Wiley$d2005 215 $a1 online resource (480 p.) 225 1 $aWiley-Interscience series on mass spectrometry 300 $aDescription based upon print version of record. 311 $a0-471-45602-0 320 $aIncludes bibliographical references and index. 327 $aMASS SPECTROMETRY IN BIOPHYSICS; CONTENTS; Preface; 1 General Overview of Basic Concepts in Molecular Biophysics; 1.1. Covalent Structure of Biopolymers; 1.2. Noncovalent Interactions and Higher-order Structure; 1.2.1. Electrostatic Interaction; 1.2.2. Hydrogen Bonding; 1.2.3. Steric Clashes and Allowed Conformations of the Peptide Backbone: Secondary Structure; 1.2.4. Solvent-Solute Interactions, Hydrophobic Effect, Side Chain Packing, and Tertiary Structure; 1.2.5. Intermolecular Interactions and Association: Quaternary Structure; 1.3. The Protein Folding Problem 327 $a1.3.1. What Is Protein Folding?1.3.2. Why Is Protein Folding So Important; 1.3.3. What Is the Natively Folded Protein and How Do We Define a Protein Conformation?; 1.3.4. What Are Non-native Protein Conformations? Random Coils, Molten Globules, and Folding Intermediates; 1.3.5. Protein Folding Pathways; 1.4. Protein Energy Landscapes and the Folding Problem; 1.4.1. Protein Conformational Ensembles and Energy Landscapes: Enthalpic and Entropic Considerations; 1.4.2. Equilibrium and Kinetic Intermediates on the Energy Landscape; 1.5. Protein Dynamics and Function 327 $a1.5.1. Limitations of the Structure-Function Paradigm1.5.2. Protein Dynamics Under Native Conditions; 1.5.3. Biomolecular Dynamics and Binding from the Energy Landscape Perspective; 1.5.4. Energy Landscapes Within a Broader Context of Nonlinear Dynamics: Information Flow and Fitness Landscapes; References; 2 Overview of "Traditional" Experimental Arsenal to Study Biomolecular Structure and Dynamics; 2.1. X-Ray Crystallography; 2.1.1. Fundamentals; 2.1.2. Crystal Structures at Atomic and Ultrahigh Resolution; 2.1.3. Crystal Structures of Membrane Proteins 327 $a2.1.4. Protein Dynamics and X-Ray Diffraction2.2. Solution Scattering Techniques; 2.2.1. Static and Dynamic Light Scattering; 2.2.2. Small-Angle X-Ray Scattering; 2.2.3. Cryo-Electron Microscopy; 2.2.4. Neutron Scattering; 2.3. NMR Spectroscopy; 2.3.1. Heteronuclear NMR; 2.3.2. Hydrogen Exchange by NMR; 2.4. Other Spectroscopic Techniques; 2.4.1. Cumulative Measurements of Higher Order Structure: Circular Dichroism; 2.4.2. Vibrational Spectroscopy; 2.4.3. Fluorescence: Monitoring Specific Dynamic Events; 2.5. Other Biophysical Methods to Study Macromolecular Interactions and Dynamics 327 $a2.5.1. Calorimetric Methods2.5.2. Analytical Ultracentrifugation; 2.5.3. Surface Plasmon Resonance; 2.5.4. Gel Filtration; 2.5.5. Gel Electrophoresis; References; 3 Overview of Biological Mass Spectrometry; 3.1. Basic Principles of Mass Spectrometry; 3.1.1. Stable Isotopes and Isotopic Distributions; 3.1.2. Macromolecular Mass: Terms and Definitions; 3.2. Methods of Producing Biomolecular Ions; 3.2.1. Macromolecular Ion Desorption Techniques: General Considerations; 3.2.2. Electrospray Ionization; 3.2.3. Matrix Assisted Laser Desorption/Ionization; 3.3. Mass Analysis 327 $a3.3.1. General Considerations: m/z Range and Mass Discrimination, Mass Resolution, Duty Cycle, Data Acquisition Rate 330 $aThe first systematic summary of biophysical mass spectrometry techniquesRecent advances in mass spectrometry (MS) have pushed the frontiers of analytical chemistry into the biophysical laboratory. As a result, the biophysical community's acceptance of MS-based methods, used to study protein higher-order structure and dynamics, has accelerated the expansion of biophysical MS.Despite this growing trend, until now no single text has presented the full array of MS-based experimental techniques and strategies for biophysics. Mass Spectrometry in Biophysics expertly closes this gap i 410 0$aWiley-Interscience series on mass spectrometry. 606 $aMass spectrometry 606 $aBiophysics 606 $aBiomolecules$xSpectra 608 $aElectronic books. 615 0$aMass spectrometry. 615 0$aBiophysics. 615 0$aBiomolecules$xSpectra. 676 $a572.33 676 $a572.8 676 $a572/.33 700 $aKaltashov$b Igor A$0873998 701 $aEyles$b Stephen J$0961452 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910143577603321 996 $aMass spectrometry in biophysics$92179687 997 $aUNINA