LEADER 07161nam 2200673 450 001 9910143557503321 005 20211109143458.0 010 $a0-470-65345-0 010 $a1-280-82671-1 010 $a9786610826711 010 $a0-470-10628-X 010 $a0-470-10627-1 024 7 $a10.1002/047010628X 035 $a(CKB)1000000000355616 035 $a(EBL)290455 035 $a(SSID)ssj0000161559 035 $a(PQKBManifestationID)11180709 035 $a(PQKBTitleCode)TC0000161559 035 $a(PQKBWorkID)10198023 035 $a(PQKB)10428188 035 $a(MiAaPQ)EBC290455 035 $a(CaBNVSL)mat05237622 035 $a(IDAMS)0b00006481095a22 035 $a(IEEE)5237622 035 $a(OCoLC)123502484 035 $a(EXLCZ)991000000000355616 100 $a20070425h20152007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aGenetic algorithms in electromagnetics /$fRandy L. Haupt, Douglas H. Werner 210 1$aHoboken, New Jersey :$cIEEE Press :$dc2007. 215 $a1 online resource (317 p.) 300 $aDescription based upon print version of record. 311 $a0-471-48889-5 320 $aIncludes bibliographical references (p. 277-297) and index. 327 $aPreface. -- Acknowledgments. -- 1. Introduction to Optimization in Electromagnetics. -- 1.1 Optimizing a Function of One Variable. -- 1.1.1 Exhaustive Search. -- 1.1.2 Random Search. -- 1.1.3 Golden Search. -- 1.1.4 Newton's Method. -- 1.1.5 Quadratic Interpolation. -- 1.2 Optimizing a Function of Multiple Variables. -- 1.2.1 Random Search. -- 1.2.2 Line Search. -- 1.2.3 Nelder-Mead Downhill Simplex Algorithm. -- 1.3 Comparing Local Numerical Optimization Algorithms. -- 1.4 Simulated Annealing. -- 1.5 Genetic Algorithm. -- 2. Anatomy of a Genetic Algorithm. -- 2.1 Creating an Initial Population. -- 2.2 Evaluating Fitness. -- 2.3 Natural Selection. -- 2.4 Mate Selection. -- 2.4.1 Roulette Wheel Selection. -- 2.4.2 Tournament Selection. -- 2.5 Generating Offspring. -- 2.6 Mutation. -- 2.7 Terminating the Run. -- 3. Step-by-Step Examples. -- 3.1 Placing Nulls. -- 3.2 Thinned Arrays. -- 4. Optimizing Antenna Arrays. -- 4.1 Optimizing Array Amplitude Tapers. -- 4.2 Optimizing Array Phase Tapers. -- 4.2.1 Optimum Quantized Low-Sidelobe Phase Tapers. -- 4.2.2 Phase-Only Array Synthesis Using Adaptive GAs. -- 4.3 Optimizing Arrays with Complex Weighting. -- 4.3.1 Shaped-Beam Synthesis. -- 4.3.2 Creating a Plane Wave in the Near Field. -- 4.4 Optimizing Array Element Spacing. -- 4.4.1 Thinned Arrays. -- 4.4.2 Interleaved Thinned Linear Arrays. -- 4.4.3 Array Element Perturbation. -- 4.4.4 Aperiodic Fractile Arrays. -- 4.4.5 Fractal-Random and Polyfractal Arrays. -- 4.4.6 Aperiodic Refl ectarrays. -- 4.5 Optimizing Conformal Arrays. -- 4.6 Optimizing Reconfi gurable Apertures. -- 4.6.1 Planar Reconfi gurable Cylindrical Wire Antenna Design. -- 4.6.2 Planar Reconfi gurable Ribbon Antenna Design. -- 4.6.3 Design of Volumetric Reconfi gurable Antennas. -- 4.6.4 Simulation Results--Planar Reconfi gurable Cylindrical Wire Antenna. -- 4.6.5 Simulation Results--Volumetric Reconfi gurable Cylindrical Wire Antenna. -- 4.6.6 Simulation Results--Planar Reconfi gurable Ribbon Antenna. -- 5. Smart Antennas Using a GA. 327 $a5.1 Amplitude and Phase Adaptive Nulling. -- 5.2 Phase-Only Adaptive Nulling. -- 5.3 Adaptive Reflector. -- 5.4 Adaptive Crossed Dipoles. -- 6. Genetic Algorithm Optimization of Wire Antennas. -- 6.1 Introduction. -- 6.2 GA Design of Electrically Loaded Wire Antennas. -- 6.3 GA Design of Three-Dimensional Crooked-Wire Antennas. -- 6.4 GA Design of Planar Crooked-Wire and Meander-Line Antennas. -- 6.5 GA Design of Yagida Antennas. -- 7. Optimization of Aperture Antennas. -- 7.1 Refl ector Antennas. -- 7.2 Horn Antennas. -- 7.3 Microstrip Antennas. -- 8. Optimization of Scattering. -- 8.1 Scattering from an Array of Strips. -- 8.2 Scattering from Frequency-Selective Surfaces. -- 8.2.1 Optimization of FSS Filters. -- 8.2.2 Optimization of Reconfi gurable FSSs. -- 8.2.3 Optimization of EBGs. -- 8.3 Scattering from Absorbers. -- 8.3.1 Conical or Wedge Absorber Optimization. -- 8.3.2 Multilayer Dielectric Broadband Absorber Optimization. -- 8.3.3 Ultrathin Narrowband Absorber Optimization. -- 9. GA Extensions. -- 9.1 Selecting Population Size and Mutation Rate. -- 9.2 Particle Swarm Optimization (PSO). -- 9.3 Multiple-Objective Optimization. -- 9.3.1 Introduction. -- 9.3.2 Strength Pareto Evolutionary Algorithm Strength Value Calculation. -- 9.3.3 Strength Pareto Evolutionary Algorithm Pareto Set Clustering. -- 9.3.4 Strength Pareto Evolutionary Algorithm Implementation. -- 9.3.5 SPEA-Optimized Planar Arrays. -- 9.3.6 SPEA-Optimized Planar Polyfractal Arrays. -- Appendix: MATLAB Code. -- Bibliography. -- Index. 330 $aA thorough and insightful introduction to using genetic algorithms to optimize electromagnetic systems Genetic Algorithms in Electromagnetics focuses on optimizing the objective function when a computer algorithm, analytical model, or experimental result describes the performance of an electromagnetic system. It offers expert guidance to optimizing electromagnetic systems using genetic algorithms (GA), which have proven to be tenacious in finding optimal results where traditional techniques fail. Genetic Algorithms in Electromagnetics begins with an introduction to optimization and several commonly used numerical optimization routines, and goes on to feature: . Introductions to GA in both binary and continuous variable forms, complete with examples of MATLAB(r) commands. Two step-by-step examples of optimizing antenna arrays as well as a comprehensive overview of applications of GA to antenna array design problems. Coverage of GA as an adaptive algorithm, including adaptive and smart arrays as well as adaptive reflectors and crossed dipoles. Explanations of the optimization of several different wire antennas, starting with the famous "crooked monopole". How to optimize horn, reflector, and microstrip patch antennas, which require significantly more computing power than wire antennas. Coverage of GA optimization of scattering, including scattering from frequency selective surfaces and electromagnetic band gap materials. Ideas on operator and parameter selection for a GA. Detailed explanations of particle swarm optimization and multiple objective optimization. An appendix of MATLAB code for experimentation. 606 $aAntenna arrays$xDesign 606 $aElectromagnetism$xMathematical models 606 $aGenetic algorithms 615 0$aAntenna arrays$xDesign. 615 0$aElectromagnetism$xMathematical models. 615 0$aGenetic algorithms. 676 $a537.015197 676 $a621.30285/631 676 $a621.30285631 700 $aHaupt$b Randy L$0319599 701 $aWerner$b Douglas H.$f1960-$0845932 801 0$bCaBNVSL 801 1$bCaBNVSL 801 2$bCaBNVSL 906 $aBOOK 912 $a9910143557503321 996 $aGenetic algorithms in electromagnetics$91888854 997 $aUNINA