LEADER 01350nam--2200409---450- 001 990005997740203316 005 20150119125423.0 010 $a978-88-04-64579-5 035 $a000599774 035 $aUSA01000599774 035 $a(ALEPH)000599774USA01 035 $a000599774 100 $a20141013d2014----km-y0itay50------ba 101 $aita 102 $aIT 105 $a||||||||001yy 200 1 $aCome parlare perche i bambini ti ascoltino & come ascoltare perché ti parlino$fAdele Faber, Elaine Mazlish$gpostafzione di Joanna faber$gtraduzione di Chiara Libero 210 $aMilano$cMondadori$d2014 215 $aXII, 307 p.$d21 cm 225 2 $aOscar saggi 410 0$12001$aOscar saggi 454 1$12001$aHow to talk so kids will listen & listen so kids will talk$917054 606 0 $aPsicologia infantile$2BNCF 676 $a155.4 700 1$aFABER,$bAdele$0619714 701 1$aMAZLISH,$bElaine$0619715 702 1$aFABER,$bJoanna 702 1$aLIBERO,$bChiara 801 0$aIT$bsalbc$gISBD 912 $a990005997740203316 951 $aII.3. 4008$b248063 L.M.$cII.3.$d365811 959 $aBK 969 $aUMA 979 $aALESSANDRA$b90$c20150119$lUSA01$h1252 979 $aALESSANDRA$b90$c20150119$lUSA01$h1254 996 $aHow to talk so kids will listen & listen so kids will talk$917054 997 $aUNISA LEADER 05392nam 22006494a 450 001 9910143485103321 005 20170815114745.0 010 $a1-280-27485-9 010 $a9780470020172 010 $a9786610274857 010 $a0-470-02017-2 010 $a0-470-02018-0 035 $a(CKB)111090529060232 035 $a(EBL)219752 035 $a(OCoLC)55519643 035 $a(SSID)ssj0000125269 035 $a(PQKBManifestationID)11132735 035 $a(PQKBTitleCode)TC0000125269 035 $a(PQKBWorkID)10026634 035 $a(PQKB)10077961 035 $a(MiAaPQ)EBC219752 035 $a(EXLCZ)99111090529060232 100 $a20031120d2004 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe combined finite-discrete element method$b[electronic resource] /$fAnte Munjiza 210 $aHoboken, NJ $cWiley$dc2004 215 $a1 online resource (349 p.) 300 $aDescription based upon print version of record. 311 $a0-470-84199-0 320 $aIncludes bibliographical references (p. [319]-330) and index. 327 $aThe Combined Finite-Discrete Element Method; Contents; Preface; Acknowledgements; 1 Introduction; 1.1 General Formulation of Continuum Problems; 1.2 General Formulation of Discontinuum Problems; 1.3 A Typical Problem of Computational Mechanics of Discontinua; 1.4 Combined Continua-Discontinua Problems; 1.5 Transition from Continua to Discontinua; 1.6 The Combined Finite-Discrete Element Method; 1.7 Algorithmic and Computational Challenge of the Combined Finite-Discrete Element Method; 2 Processing of Contact Interaction in the Combined Finite Discrete Element Method; 2.1 Introduction 327 $a2.2 The Penalty Function Method2.3 Potential Contact Force in 2D; 2.4 Discretisation of Contact Force in 2D; 2.5 Implementation Details for Discretised Contact Force in 2D; 2.6 Potential Contact Force in 3D; 2.6.1 Evaluation of contact force; 2.6.2 Computational aspects; 2.6.3 Physical interpretation of the penalty parameter; 2.6.4 Contact damping; 2.7 Alternative Implementation of the Potential Contact Force; 3 Contact Detection; 3.1 Introduction; 3.2 Direct Checking Contact Detection Algorithm; 3.2.1 Circular bounding box; 3.2.2 Square bounding object; 3.2.3 Complex bounding box 327 $a3.3 Formulation of Contact Detection Problem for Bodies of Similar Size in 2D3.4 Binary Tree Based Contact Detection Algorithm for Discrete Elements of Similar Size; 3.5 Direct Mapping Algorithm for Discrete Elements of Similar Size; 3.6 Screening Contact Detection Algorithm for Discrete Elements of Similar Size; 3.7 Sorting Contact Detection Algorithm for Discrete Elements of a Similar Size; 3.8 Munjiza-NBS Contact Detection Algorithm in 2D; 3.8.1 Space decomposition; 3.8.2 Mapping of discrete elements onto cells; 3.8.3 Mapping of discrete elements onto rows and columns of cells 327 $a3.8.4 Representation of mapping3.9 Selection of Contact Detection Algorithm; 3.10 Generalisation of Contact Detection Algorithms to 3D Space; 3.10.1 Direct checking contact detection algorithm; 3.10.2 Binary tree search; 3.10.3 Screening contact detection algorithm; 3.10.4 Direct mapping contact detection algorithm; 3.11 Generalisation of Munjiza-NBS Contact Detection Algorithm to Multidimensional Space; 3.12 Shape and Size Generalisation-Williams C-GRID Algorithm; 4 Deformability of Discrete Elements; 4.1 Deformation; 4.2 Deformation Gradient; 4.2.1 Frames of reference 327 $a4.2.2 Transformation matrices4.3 Homogeneous Deformation; 4.4 Strain; 4.5 Stress; 4.5.1 Cauchy stress tensor; 4.5.2 First Piola-Kirchhoff stress tensor; 4.5.3 Second Piola-Kirchhoff stress tensor; 4.6 Constitutive Law; 4.7 Constant Strain Triangle Finite Element; 4.8 Constant Strain Tetrahedron Finite Element; 4.9 Numerical Demonstration of Finite Rotation Elasticity in the Combined Finite-Discrete Element Method; 5 Temporal Discretisation; 5.1 The Central Difference Time Integration Scheme; 5.1.1 Stability of the central difference time integration scheme 327 $a5.2 Dynamics of Irregular Discrete Elements Subject to Finite Rotations in 3D 330 $aThe combined finite discrete element method is a relatively new computational tool aimed at problems involving static and / or dynamic behaviour of systems involving a large number of solid deformable bodies. Such problems include fragmentation using explosives (e.g rock blasting), impacts, demolition (collapsing buildings), blast loads, digging and loading processes, and powder technology.The combined finite-discrete element method - a natural extension of both discrete and finite element methods - allows researchers to model problems involving the deformability of either one solid body, 606 $aDeformations (Mechanics)$xMathematical models 606 $aFinite element method 608 $aElectronic books. 615 0$aDeformations (Mechanics)$xMathematical models. 615 0$aFinite element method. 676 $a620.00151535 676 $a620.1/123/015118 676 $a620.1123015118 700 $aMunjiza$b Ante$0958283 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910143485103321 996 $aThe combined finite-discrete element method$92171175 997 $aUNINA