LEADER 03931nam 22008175 450 001 9910143457403321 005 20250731082458.0 010 $a3-540-69701-2 024 7 $a10.1007/BFb0053010 035 $a(CKB)1000000000210899 035 $a(SSID)ssj0000324387 035 $a(PQKBManifestationID)11286811 035 $a(PQKBTitleCode)TC0000324387 035 $a(PQKBWorkID)10313628 035 $a(PQKB)10475077 035 $a(DE-He213)978-3-540-69701-5 035 $a(MiAaPQ)EBC5595773 035 $a(MiAaPQ)EBC6485425 035 $a(Au-PeEL)EBL5595773 035 $a(OCoLC)1076252580 035 $a(PPN)155230883 035 $a(EXLCZ)991000000000210899 100 $a20121227d1998 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aLectures on Proof Verification and Approximation Algorithms /$fedited by Ernst W. Mayr, Hans Jürgen Prömel, Angelika Steger 205 $a1st ed. 1998. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1998. 215 $a1 online resource (XII, 348 p.) 225 1 $aLecture Notes in Computer Science,$x1611-3349 ;$v1367 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a3-540-64201-3 327 $ato the theory of complexity and approximation algorithms -- to randomized algorithms -- Derandomization -- Proof checking and non-approximability -- Proving the PCP-Theorem -- Parallel repetition of MIP(2,1) systems -- Bounds for approximating MaxLinEq3-2 and MaxEkSat -- Deriving non-approximability results by reductions -- Optimal non-approximability of MaxClique -- The hardness of approximating set cover -- Semidefinite programming and its applications to approximation algorithms -- Dense instances of hard optimization problems -- Polynomial time approximation schemes for geometric optimization problems in euclidean metric spaces. 330 $aDuring the last few years, we have seen quite spectacular progress in the area of approximation algorithms: for several fundamental optimization problems we now actually know matching upper and lower bounds for their approximability. This textbook-like tutorial is a coherent and essentially self-contained presentation of the enormous recent progress facilitated by the interplay between the theory of probabilistically checkable proofs and aproximation algorithms. The basic concepts, methods, and results are presented in a unified way to provide a smooth introduction for newcomers. These lectures are particularly useful for advanced courses or reading groups on the topic. 410 0$aLecture Notes in Computer Science,$x1611-3349 ;$v1367 606 $aComputer science 606 $aAlgorithms 606 $aComputer science$xMathematics 606 $aDiscrete mathematics 606 $aMathematical optimization 606 $aCalculus of variations 606 $aTheory of Computation 606 $aAlgorithms 606 $aDiscrete Mathematics in Computer Science 606 $aDiscrete Mathematics 606 $aCalculus of Variations and Optimization 615 0$aComputer science. 615 0$aAlgorithms. 615 0$aComputer science$xMathematics. 615 0$aDiscrete mathematics. 615 0$aMathematical optimization. 615 0$aCalculus of variations. 615 14$aTheory of Computation. 615 24$aAlgorithms. 615 24$aDiscrete Mathematics in Computer Science. 615 24$aDiscrete Mathematics. 615 24$aCalculus of Variations and Optimization. 676 $a003.54 702 $aMayr$b Ernst 702 $aPromel$b H. J. 702 $aSteger$b Angelika 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910143457403321 996 $aLectures on proof verification and approximation algorithms$92105503 997 $aUNINA