LEADER 01264nmm a2200349 i 4500 001 991000529479707536 007 cr nn 008mamaa 008 090731s2009 de j eng d 020 $a9783540927969 035 $ab13870981-39ule_inst 040 $aDip.to Matematica$beng 084 $aAMS 82B20 084 $aAMS 82B26 084 $aAMS 82C26 084 $aAMS 60K35 100 1 $aBiskup, Marek$0321230 245 10$aMethods of contemporary mathematical statistical physics$h[e-book] /$cby Marek Biskup ... [et al.] ; edited by Roman Kotecký 260 $aBerlin :$bSpringer,$c2009 300 $a1 online resource (x, 343 p.) 440 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1970 650 0$aDistribution (Probability theory) 650 0$aMathematical physics 650 0$aMechanical engineering 650 0$aStatistics 700 1 $aKotecký, Roman 773 0 $aSpringer eBooks 856 40$uhttp://dx.doi.org/10.1007/978-3-540-92796-9$zAn electronic book accessible through the World Wide Web 907 $a.b13870981$b03-03-22$c14-01-10 912 $a991000529479707536 996 $aMethods of contemporary mathematical statistical physics$9230299 997 $aUNISALENTO 998 $ale013$b14-01-10$cm$d@ $e-$feng$gde $h0$i0 LEADER 05099nam 22007334a 450 001 9910143313903321 005 20200520144314.0 010 $a1-280-51060-9 010 $a9786610510603 010 $a1-84704-475-1 010 $a0-470-61243-6 010 $a0-470-39456-0 010 $a1-84704-575-8 035 $a(CKB)1000000000335557 035 $a(EBL)700735 035 $a(SSID)ssj0000159816 035 $a(PQKBManifestationID)11946962 035 $a(PQKBTitleCode)TC0000159816 035 $a(PQKBWorkID)10158805 035 $a(PQKB)10389529 035 $a(MiAaPQ)EBC700735 035 $a(MiAaPQ)EBC261403 035 $a(Au-PeEL)EBL261403 035 $a(PPN)158737067 035 $a(OCoLC)501313834 035 $a(EXLCZ)991000000000335557 100 $a20060504d2006 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aFundamentals of acoustics /$fMichel Bruneau ; Thomas Scelo, translator and contributor 210 $aLondon ;$aNewport Beach, CA $cISTE Ltd$d2006 215 $a1 online resource (638 p.) 225 1 $aISTE ;$vv.99 300 $aDescription based upon print version of record. 311 $a1-905209-25-8 320 $aIncludes bibliographical references (p. [631]-632) and index. 327 $aFundamentals of Acoustics; Table of Contents; Preface; Chapter 1. Equations of Motion in Non-dissipative Fluid; 1.1. Introduction; 1.1.1. Basic elements; 1.1.2. Mechanisms of transmission; 1.1.3. Acoustic motion and driving motion; 1.1.4. Notion of frequency; 1.1.5. Acoustic amplitude and intensity; 1.1.6. Viscous and thermal phenomena; 1.2. Fundamental laws of propagation in non-dissipative fluids; 1.2.1. Basis of thermodynamics; 1.2.2. Lagrangian and Eulerian descriptions of fluid motion; 1.2.3. Expression of the fluid compressibility: mass conservation law 327 $a1.2.4. Expression of the fundamental law of dynamics: Euler's equation1.2.5. Law of fluid behavior: law of conservation of thermomechanic energy; 1.2.6. Summary of the fundamental laws; 1.2.7. Equation of equilibrium of moments; 1.3. Equation of acoustic propagation; 1.3.1. Equation of propagation; 1.3.2. Linear acoustic approximation; 1.3.3. Velocity potential; 1.3.4. Problems at the boundaries; 1.4. Density of energy and energy flow, energy conservation law; 1.4.1. Complex representation in the Fourier domain; 1.4.2. Energy density in an "ideal" fluid 327 $a1.4.3. Energy flow and acoustic intensity1.4.4. Energy conservation law; Chapter 1: Appendix. Some General Comments on Thermodynamics; A.1. Thermodynamic equilibrium and equation of state; A.2. Digression on functions of multiple variables (study case of two variables); A.2.1. Implicit functions; A.2.2. Total exact differential form; Chapter 2. Equations of Motion in Dissipative Fluid; 2.1. Introduction; 2.2. Propagation in viscous fluid: Navier-Stokes equation; 2.2.1. Deformation and strain tensor; 2.2.2. Stress tensor; 2.2.3. Expression of the fundamental law of dynamics 327 $a2.3. Heat propagation: Fourier equation2.4. Molecular thermal relaxation; 2.4.1. Nature of the phenomenon; 2.4.2. Internal energy, energy of translation, of rotation and of vibration of molecules; 2.4.3. Molecular relaxation: delay of molecular vibrations; 2.5. Problems of linear acoustics in dissipative fluid at rest; 2.5.1. Propagation equations in linear acoustics.; 2.5.2. Approach to determine the solutions; 2.5.3. Approach of the solutions in presence of acoustic sources; 2.5.4. Boundary conditions 327 $aChapter 2: Appendix. Equations of continuity and equations at the thermomechanic discontinuities in continuous mediaA.1. Introduction; A.1.1. Material derivative of volume integrals; A.1.2. Generalization; A.2. Equations of continuity; A.2.1. Mass conservation equation; A.2.2. Equation of impulse continuity; A.2.3. Equation of entropy continuity; A.2.4. Equation of energy continuity; A.3. Equations at discontinuities in mechanics; A.3.1. Introduction; A.3.2. Application to the equation of impulse conservation; A.3.3. Other conditions at discontinuities 327 $aA.4. Examples of application of the equations at discontinuities in mechanics: interface conditions 330 $aThe central theme of the chapters is acoustic propagation in fluid media, dissipative or non-dissipative, homogeneous or nonhomogeneous, infinite or limited, placing particular emphasis on the theoretical formulation of the problems considered. 410 0$aISTE 606 $aSound 606 $aAcoustical engineering 606 $aFluids$xAcoustic properties 606 $aSound$xTransmission 615 0$aSound. 615 0$aAcoustical engineering. 615 0$aFluids$xAcoustic properties. 615 0$aSound$xTransmission. 676 $a534 700 $aBruneau$b Michel$f1937-$0927359 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910143313903321 996 $aFundamentals of acoustics$92083585 997 $aUNINA