LEADER 01428nam--2200409---450- 001 990003630230203316 005 20120227155723.0 010 $a978-88-498-2916-7 035 $a000363023 035 $aUSA01000363023 035 $a(ALEPH)000363023USA01 035 $a000363023 100 $a20120227d2010----km-y0itay50------ba 101 $aita 102 $aIT 105 $ay|||||||001yy 200 1 $a<> diritto delle minoranze nella nuova Europa$ei principi del Trattato di Lisbona ed i loro riflessi sul modello dell'autonomia altoatesina$fMarco Di Ruzza, Francesco Sordini, Lorenzo Trapassi$gprefazione di Franco Frattini 210 $aSoveria Mannelli$cRubbettino$d2010 215 $aX, 86 p.$d23 cm 225 2 $aStudi internazionali 225 2 $aSaggi$v258 410 1$12001$aStudi internazionali 410 0$12001$aSaggi$v, 258 606 0 $aAlto Adige$xAutonomia$2BNCF$xEffetti [del] Trattato di Lisbona <2007> 676 $a945.383093$v22 700 1$aDI RUZZA,$bMarco$0517320 701 1$aSORDINI,$bFrancesco$0517321 701 1$aTRAPASSI,$bLorenzo$0517322 801 0$aIT$bsalbc$gISBD 912 $a990003630230203316 951 $aX.3.B. 6377$b71342 G.$cX.3.B.$d00307073 959 $aBK 969 $aUMA 979 $aCHIARA$b90$c20120227$lUSA01$h1555 979 $aCHIARA$b90$c20120227$lUSA01$h1557 996 $aDiritto delle minoranze nella nuova Europa$9850137 997 $aUNISA LEADER 05474nam 22006854a 450 001 9910143294103321 005 20201210111909.0 010 $a1-280-74821-4 010 $a9786610748211 010 $a0-470-76116-4 010 $a0-470-98856-8 010 $a1-4051-7146-4 035 $a(CKB)1000000000341922 035 $a(EBL)284285 035 $a(OCoLC)437176160 035 $a(SSID)ssj0000104227 035 $a(PQKBManifestationID)11122685 035 $a(PQKBTitleCode)TC0000104227 035 $a(PQKBWorkID)10079370 035 $a(PQKB)10134021 035 $a(MiAaPQ)EBC284285 035 $a(EXLCZ)991000000000341922 100 $a20041117d2005 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aAntioxidants and reactive oxygen species in plants$b[electronic resource] /$fedited by Nicholas Smirnoff 210 $aOxford ;$aAmes, Iowa $cBlackwell Pub.$d2005 215 $a1 online resource (318 p.) 225 1 $aBiological Sciences Series 300 $aDescription based upon print version of record. 311 $a1-4051-2529-2 320 $aIncludes bibliographical references and index. 327 $aAntioxidants and Reactive Oxygen Species in Plants; Contents; Contributors; Preface; 1 Glutathione; 1.1 Introduction; 1.2 The glutathione redox couple and cellular redox potential; 1.3 Glutathione metabolism; 1.4 Biosynthesis and inhibition by L-buthionine-SR-sulphoximine; 1.5 Glutathione and the cell cycle; 1.6 Glutathione in leaves and its relationship to chilling tolerance; 1.7 Glutathione and homoglutathione in the regulation of root and root nodule development; 1.8 Transport and transporters; 1.9 Glutathione and signalling; 1.10 Conclusions and perspectives 327 $a2 Plant thiol enzymes and thiol homeostasis in relation to thiol-dependent redox regulation and oxidative stress2.1 Introduction: plant sulfur and thiol contents; 2.2 The redox potential and its relation to the redox proteome; 2.3 Oxidation of thiol groups; 2.4 C-X-X-C and C-X-X-S motifs in redox proteins; 2.5 The principle reactions that maintain thiol-redox homeostasis; 2.6 Enzymes involved in thiol-disulfide interconversion; 2.6.1 Thioredoxins; 2.6.2 Glutaredoxins; 2.6.3 Omega and lambda-GSTs; 2.6.4 Protein disulfide isomerases 327 $a2.7 Peroxiredoxins, thiol/disulfide proteins in antioxidant defence2.7.1 1-Cys Prx; 2.7.2 2-Cys Prx; 2.7.3 Prx Q; 2.7.4 Type II Prx; 2.8 The thiol proteome of plants; 2.9 Thiol homeostasis in subcellular compartments; 2.10 Thiol-dependent redox regulation of gene expression; 2.11 Linking thiol regulation to metabolic and developmental pathways; 2.12 Outlook; 3 Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions; 3.1 Introduction; 3.2 Ascorbate; 3.2.1 Distribution and subcellular localisation; 3.2.2 Ascorbate biosynthesis; 3.2.3 Ascorbate recycling 327 $a3.2.4 Ascorbate and dehydroascorbate transport across membranes3.2.5 Enzymes involved in ascorbate oxidation; 3.2.6 Ascorbate catabolism; 3.2.7 Control of ascorbate synthesis and metabolic engineering; 3.2.8 The functions of ascorbate; 3.3 Vitamin E: tocopherols and tocotrienols; 3.3.1 Isoprenoid antioxidants; 3.3.2 Structure and antioxidant activity of tocopherols and tocotrienols; 3.3.3 Functions of tocopherol; 3.3.4 Biosynthesis of tocopherols and tocotrienols; 3.3.5 Control and engineering of tocopherol and tocotrienol biosynthesis; 3.4 Carotenoids; 3.4.1 Carotenoids as antioxidants 327 $a3.4.2 Carotenoid biosynthesis and metabolic engineering4 Ascorbate peroxidase; 4.1 Enzymatic removal of hydrogen peroxide in plants; 4.2 Functional analysis of APX; 4.3 APX structure; 4.3.1 Overall structure; 4.3.2 Active site structure; 4.3.3 Substrate binding; 4.4 Evolution of APXs; 4.5 Summary; 5 Catalases in plants: molecular and functional properties and role in stress defence; 5.1 Introduction; 5.2 Biochemistry and molecular structure of catalases; 5.2.1 Types of catalases; 5.2.2 Molecular structure; 5.2.3 Mechanism of the catalytic reaction and kinetic properties 327 $a5.3 Occurrence and properties of plant catalases 330 $aReactive oxygen species (ROS) are produced during the interaction of metabolism with oxygen. As ROS have the potential to cause oxidative damage by reacting with biomolecules, research on ROS has concentrated on the oxidative damage that results from exposure to environmental stresses and on the role of ROS in defence against pathogens. However, more recently, it has become apparent that ROS also have important roles as signalling molecules. A complex network of enzymatic and small molecule antioxidants controls the concentration of ROS and repairs oxidative damage, and research is revealing t 410 0$aBiological Sciences Series 606 $aAntioxidants$xPhysiological effect 606 $aActive oxygen$xPhysiological effect 606 $aPlants$xMetabolism 608 $aElectronic books. 615 0$aAntioxidants$xPhysiological effect. 615 0$aActive oxygen$xPhysiological effect. 615 0$aPlants$xMetabolism. 676 $a572.42 676 $a572/.42 701 $aSmirnoff$b N$0990662 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910143294103321 996 $aAntioxidants and reactive oxygen species in plants$92266776 997 $aUNINA