LEADER 04891nam 22007454a 450 001 9910143214303321 005 20170815113813.0 010 $a1-280-27039-X 010 $a9786610270392 010 $a0-470-34164-5 010 $a0-470-85605-X 010 $a0-470-85606-8 035 $a(CKB)111087027100668 035 $a(EBL)164843 035 $a(OCoLC)475873648 035 $a(SSID)ssj0000139885 035 $a(PQKBManifestationID)11151259 035 $a(PQKBTitleCode)TC0000139885 035 $a(PQKBWorkID)10028525 035 $a(PQKB)11769699 035 $a(MiAaPQ)EBC164843 035 $a(EXLCZ)99111087027100668 100 $a20030604d2003 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aDisease mapping with WinBUGS and MLwiN$b[electronic resource] /$fAndrew B. Lawson, William J. Browne, Carmen L. Vidal Rodeiro 210 $aChichester, West Sussex, England ;$aHoboken, NJ $cJ. Wiley$dc2003 215 $a1 online resource (293 p.) 225 1 $aStatistics in practice 300 $aDescription based upon print version of record. 311 $a0-470-85604-1 320 $aIncludes bibliographical references (p. 267-273) and index. 327 $aDisease Mapping with WinBUGS and MLwiN; Contents; Preface; Notation; 0.1 Standard notation for multilevel modelling; 0.2 Spatial multiple-membership models and the MMMC notation; 0.3 Standard notation for WinBUGS models; 1 Disease mapping basics; 1.1 Disease mapping and map reconstruction; 1.2 Disease map restoration; 2 Bayesian hierarchical modelling; 2.1 Likelihood and posterior distributions; 2.2 Hierarchical models; 2.3 Posterior inference; 2.4 Markov chain Monte Carlo methods; 2.5 Metropolis and Metropolis-Hastings algorithms; 2.6 Residuals and goodness of fit; 3 Multilevel modelling 327 $a3.1 Continuous response models3.2 Estimation procedures for multilevel models; 3.3 Poisson response models; 3.4 Incorporating spatial information; 3.5 Discussion; 4 WinBUGS basics; 4.1 About WinBUGS; 4.2 Start using WinBUGS; 4.3 Specification of the model; 4.4 Model fitting; 4.5 Scripts; 4.6 Checking convergence; 4.7 Spatial modelling: GeoBUGS; 4.8 Conclusions; 5 MLwiN basics; 5.1 About MLwiN; 5.2 Getting started; 5.3 Fitting statistical models; 5.4 MCMC estimation in MLwiN; 5.5 Spatial modelling; 5.6 Conclusions; 6 Relative risk estimation; 6.1 Relative risk estimation using WinBUGS 327 $a6.2 Spatial prediction6.3 An analysis of the Ohio dataset using MLwiN; 7 Focused clustering: the analysis of putative health hazards; 7.1 Introduction; 7.2 Study design; 7.3 Problems of inference; 7.4 Modelling the hazard exposure risk; 7.5 Models for count data; 7.6 Bayesian models; 7.7 Focused clustering in WinBUGS; 7.8 Focused clustering in MLwiN; 8 Ecological analysis; 8.1 Introduction; 8.2 Statistical models; 8.3 WinBUGS analyses of ecological datasets; 8.4 MLwiN analyses of ecological datasets; 9 Spatially-correlated survival analysis; 9.1 Survival analysis in WinBUGS 327 $a9.2 Survival analysis in MLwiN10 Epilogue; Appendix 1: WinBUGS code for focused clustering models; A.1 Falkirk example; A.2 Ohio example; Appendix 2: S-Plus function for conversion to GeoBUGS format; Bibliography; Index 330 $aDisease mapping involves the analysis of geo-referenced disease incidence data and has many applications, for example within resource allocation, cluster alarm analysis, and ecological studies. There is a real need amongst public health workers for simpler and more efficient tools for the analysis of geo-referenced disease incidence data. Bayesian and multilevel methods provide the required efficiency, and with the emergence of software packages - such as WinBUGS and MLwiN - are now easy to implement in practice.Provides an introduction to Bayesian and multilevel modelling in disease m 410 0$aStatistics in practice. 606 $aMedical mapping 606 $aMedical geography$xMaps$xData processing 606 $aEpidemiology$xStatistical methods 606 $aEpidemiology$xData processing 606 $aPublic health surveillance 608 $aElectronic books. 615 0$aMedical mapping. 615 0$aMedical geography$xMaps$xData processing. 615 0$aEpidemiology$xStatistical methods. 615 0$aEpidemiology$xData processing. 615 0$aPublic health surveillance. 676 $a614 676 $a614.4202855369 676 $a615.4/2/0727 700 $aLawson$b Andrew$g(Andrew B.)$0149118 701 $aBrowne$b William J$g(William John),$f1972-$0970552 701 $aVidal Rodeiro$b Carmen L$0970553 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910143214303321 996 $aDisease mapping with WinBUGS and MLwiN$92205970 997 $aUNINA LEADER 00898aam a2200253 a 4500 001 991004127479707536 008 080924s2008 it ab b 001 0 ita c 020 $a9788822257925 020 $a8822257928 035 $ab13807213-39ule_inst 040 $aDip.to Studi Storici$bita 082 $a945.581 100 1 $aSavelli, Aurora$0629669 245 10$aSiena :$bil popolo e le contrade, 16.-20. secolo /$cAurora Savelli 260 $aFirenze :$bL. S. Olschki,$c2008 300 $axxx, 533 p. :$bill. ;$c25 cm. 440 0$aBiblioteca storica toscana ;$v56 651 4$aSiena$ySec. 16.-20. 907 $a.b13807213$b28-01-14$c03-02-09 912 $a991004127479707536 945 $aLE023 945.581 SAV 1 1 $g1$i2023000107157$lle023$o-$pE58.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i14925151$z03-02-09 996 $aSiena$91226092 997 $aUNISALENTO 998 $ale023$b03-02-09$cm$da $e-$fita$git $h0$i0