LEADER 05467nam 2200673Ia 450 001 9910142394403321 005 20170816122514.0 010 $a1-280-85437-5 010 $a9786610854370 010 $a3-527-60740-4 010 $a3-527-60764-1 010 $a1-60119-282-7 035 $a(CKB)1000000000327206 035 $a(EBL)481448 035 $a(OCoLC)70199397 035 $a(SSID)ssj0000072613 035 $a(PQKBManifestationID)11116042 035 $a(PQKBTitleCode)TC0000072613 035 $a(PQKBWorkID)10102757 035 $a(PQKB)11752955 035 $a(MiAaPQ)EBC481448 035 $a(EXLCZ)991000000000327206 100 $a20030812d2003 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNitride semiconductors$b[electronic resource] $ehandbook on materials and devices /$fPierre Ruterana, Martin Albrecht, Jo?rg Neugebauer 210 $aWeinheim ;$a[Great Britain] $cWiley-VCH$dc2003 215 $a1 online resource (688 p.) 300 $aDescription based upon print version of record. 311 $a3-527-40387-6 320 $aIncludes bibliographical references and index. 327 $aNitride Semiconductors Handbook on Materials and Devices; Contents; Preface; List of Contributors; Part 1 Material; 1 High-Pressure Crystallization of GaN; 1.1 Introduction; 1.2 High-Pressure Crystallization of GaN; 1.2.1 Thermodynamics - Properties of GaN-Ga-N(2) System; 1.2.2 Dissolution Kinetics of N(2) and Crystal Growth Mechanism; 1.2.3 What Happens with GaN at High Temperature when the N(2) Pressure is too Low?; 1.2.4 Crystallization of GaN Using High Nitrogen Pressure Solution Growth (HNPSG) Method - Experimental; 1.2.5 Properties of GaN Single Crystals Obtained by HNPSG Method 327 $a1.2.5.1 Crystals Grown without Intentional Seeding1.2.5.2 Seeded Growth of GaN by HNPS Method; 1.2.6 Physical Properties of GaN Crystals, Grown by HNPS Method; 1.2.6.1 Point Defects; 1.2.6.2 Extended Defects; 1.3 Epitaxy on Bulk GaN; 1.3.1 Introduction; 1.3.2 Metalorganic Chemical Vapor Epitaxy on GaN Substrates in HPRC Unipress; 1.3.3 Molecular Beam Epitaxy; 1.4 Optoelectronic Devices; 1.4.1 Introduction; 1.4.2 Light Emitting Diodes Fabricated on Bulk GaN in HPRC; 1.4.3 Laser Diode Structures; 1.5 Conclusions; 1.6 Acknowledgment; 1.7 References; 2 Epitaxial Lateral Overgrowth of GaN 327 $a2.1 Heteroepitaxial GaN2.1.1 Introduction; 2.1.2 Growth of GaN/Sapphire and 6H-SiC Templates; 2.1.2.1 2D Growth Mode (GaN/Sapphire); 2.1.2.2 3D Growth Mode (GaN/Sapphire); 2.1.3 Defects in GaN/Sapphire and GaN/6H-SiC; 2.1.3.1 Extended Defects; 2.1.3.2 Native Defects; 2.1.3.3 Defect-Related Optical Properties; 2.1.3.4 Device Performance Limitations; 2.1.3.5 Electronic Properties of Defects; 2.2 Epitaxial Lateral Overgrowth (ELO); 2.2.1 Standard ELO; 2.2.2 Rationale; 2.2.3 Experimental; 2.3 One-Step Lateral Overgrowth (1S-ELO); 2.3.1 ELO in MOVPE; 2.3.1.1 Morphology and Defects 327 $a2.3.1.2 Structural Assessment2.3.1.3 Kinetics; 2.3.1.4 In-Depth Optical Assessment of MOVPE ELO GaN; 2.3.2 HVPE; 2.3.2.1 In-Depth Assessment of HVPE ELO GaN; 2.3.2.2 Stripe Openings along ; 2.3.2.3 Selective Area Epitaxy (SAE); 2.3.2.4 (C(2)H(5))(2)GaCl as Ga Source; 2.3.2.5 Stress Generation; 2.3.3 Sublimation; 2.3.4 New Developments; 2.3.4.1 ELO on Si; 2.3.4.2 Using W as Mask; 2.3.4.3 Maskless ELO; 2.3.5 Improvements of the Standard ELO Method; 2.3.6 Pendeo-Epitaxy; 2.3.7 ELO of Cubic GaN; 2.4 Two-Step ELO (2S-ELO); 2.4.1 Experimental (MOVPE); 2.4.2 In-Depth Assessment of 2S-ELO 327 $a2.4.2.1 Cathodoluminescence2.4.2.2 Luminescence of GaN by Epitaxial Lateral Overgrowth; 2.4.2.3 Time-resolved Photoluminescence; 2.4.2.4 Deep Level Transient Spectroscopy (DLTS); 2.4.2.5 Strain Distribution; 2.4.3 Assessment of HVPE; 2.4.4 ELO and Yellow Luminescence; 2.4.5 Conclusion; 2.5 New Trends; 2.5.1 3S-ELO; 2.5.2 Further Improvements; 2.6 Theoretical Analysis of ELO; 2.7 Acknowledgments; 2.8 References; 3 Plasma-Assisted Molecular Beam Epitaxy of III-V Nitrides; 3.1 Introduction; 3.2 The Nitrogen Plasma Source; 3.2.1 The Different Sources; 3.2.2 The Nitrogen Plasma 327 $a3.2.3 Characterization of the HD25 RF Source by Optical Emission Spectroscopy 330 $aSemiconductor components based on silicon have been used in a wide range of applications for some time now. These elemental semiconductors are now well researched and technologically well developed. In the meantime the focus has switched to a new group of materials: ceramic semiconductors based on nitrides are currently the subject of research due to their optical and electronic characteristics. They open up new industrial possibilities in the field of photosensors, as light sources or as electronic components.This collection of review articles provides a systematic and in-depth overview o 606 $aNitrides 606 $aSemiconductors$xMaterials 608 $aElectronic books. 615 0$aNitrides. 615 0$aSemiconductors$xMaterials. 676 $a537.622 676 $a621.3815/2 676 $a621.38152 700 $aRuterana$b Pierre$0972084 701 $aAlbrecht$b Martin$0759056 701 $aNeugebauer$b Jo?rg$0972085 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910142394403321 996 $aNitride semiconductors$92210165 997 $aUNINA