LEADER 05740nam 2200757 a 450 001 9910141598303321 005 20200520144314.0 010 $a1-118-57684-5 010 $a1-299-24212-X 010 $a1-118-57688-8 010 $a1-118-57695-0 035 $a(CKB)2670000000336874 035 $a(EBL)1132535 035 $a(OCoLC)828532768 035 $a(SSID)ssj0000904816 035 $a(PQKBManifestationID)11494281 035 $a(PQKBTitleCode)TC0000904816 035 $a(PQKBWorkID)10924547 035 $a(PQKB)11115540 035 $a(OCoLC)834616400 035 $a(MiAaPQ)EBC1132535 035 $a(Au-PeEL)EBL1132535 035 $a(CaPaEBR)ebr10661509 035 $a(CaONFJC)MIL455462 035 $a(PPN)226202437 035 $a(EXLCZ)992670000000336874 100 $a20120925d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aLaser metrology in fluid mechanics$b[electronic resource] $egranulometry, temperature and concentration measurements /$fedited by Alain Boutier 210 $aHoboken, N.J. $cISTE Ltd./John Wiley and Sons Inc.$d2013 215 $a1 online resource (348 p.) 225 0 $aWaves series 300 $aDescription based upon print version of record. 311 $a1-84821-398-0 320 $aIncludes bibliographical references and index. 327 $aTitle Page; Contents; Preface; Introduction; Chapter 1. Basics on Light Scattering by Particles; 1.1. Introduction; 1.2. A brief synopsis of electromagnetic theory; 1.2.1. Maxwell's equations; 1.2.2. Harmonic electromagnetic plane waves; 1.2.3. Optical constants; 1.2.4. Light scattering by a single particle; 1.3. Methods using separation of variables; 1.3.1. Lorenz-Mie (or Mie) theory; 1.3.2. Debye and complex angular momentum theories; 1.4. Rayleigh theory and the discrete dipole approximation; 1.4.1. Rayleigh theory; 1.4.2. Discrete dipole approximation; 1.5. The T-matrix method 327 $a1.6. Physical (or wave) optics models1.6.1. Huygens-Fresnel integral; 1.6.2. Fraunhofer diffraction theory for a particle with a circular cross section; 1.6.3. Airy theory of the rainbow; 1.6.4. Marston's physical-optics approximation; 1.7. Geometrical optics; 1.7.1. Calculation of the scattering angle; 1.7.2. Calculation of the intensity of rays; 1.7.3. Calculation of the phase and amplitude of rays; 1.8. Multiple scattering and Monte Carlo models; 1.8.1. Scattering by an optically diluted particle system; 1.8.2. Multiple scattering; 1.8.3. Monte Carlo method; 1.9. Conclusion 327 $a1.10. BibliographyChapter 2. Optical Particle Characterization; 2.1. Introduction; 2.2. Particles in flows; 2.2.1. Diameter, shape and concentration; 2.2.2. Statistical representation of particle size data; 2.2.3. Concentrations and fluxes; 2.3. An attempt to classify OPC techniques; 2.3.1. Physical principles and measured quantities; 2.3.2. Nature and procedure to achieve statistics; 2.4. Phase Doppler interferometry (or anemometry); 2.4.1. Principle; 2.4.2. Modeling the phase-diameter relationship; 2.4.3. Experimental setup and typical results; 2.4.4. Conclusion; 2.5. Ellipsometry 327 $a2.6. Forward (or "laser") diffraction2.6.1. Principle; 2.6.2. Modeling and inversion of diffraction patterns; 2.6.3. Typical experimental setup and results; 2.6.4. Conclusion; 2.7. Rainbow and near-critical-angle diffractometry techniques; 2.7.1. Similarities to forward diffraction; 2.7.2. Rainbow diffractometry; 2.7.3. Near-critical-angle diffractometry; 2.8. Classical shadowgraph imaging; 2.8.1. Principle and classical setup; 2.8.2. One-dimensional shadow Doppler technique; 2.8.3. Calculation of particle images using the point spread function; 2.8.4. Conclusion 327 $a2.9. Out-of-focus interferometric imaging2.9.1. Principle; 2.9.2. Modeling the diameter-angular frequency relationship; 2.9.3. Conclusion; 2.10. Holography of particles; 2.10.1. Gabor holography for holographic films; 2.10.2. Inline digital holography; 2.10.3. Conclusion; 2.11. Light extinction spectrometry; 2.11.1. Principle; 2.11.2. Algebraic inverse method; 2.11.3. Experimental setup and conclusion; 2.12. Photon correlation spectroscopy; 2.13. Laser-induced fluorescence and elastic-scattering imaging ratio; 2.13.1. Principle; 2.13.2. Experimental setup and results; 2.13.3. Conclusion 327 $a2.14. Laser-induced incandescence 330 $a In fluid mechanics, non-intrusive measurements are fundamental in order to improve knowledge of the behavior and main physical phenomena of flows in order to further validate codes.The principles and characteristics of the different techniques available in laser metrology are described in detail in this book.Velocity, temperature and concentration measurements by spectroscopic techniques based on light scattered by molecules are achieved by different techniques: laser-induced fluorescence, coherent anti-Stokes Raman scattering using lasers and parametric sources, and absorption 410 0$aISTE 606 $aLasers$xIndustrial applications 606 $aLaser interferometers 606 $aMeasurement 606 $aOptical measurements$xIndustrial applications 606 $aFluid mechanics 615 0$aLasers$xIndustrial applications. 615 0$aLaser interferometers. 615 0$aMeasurement. 615 0$aOptical measurements$xIndustrial applications. 615 0$aFluid mechanics. 676 $a532 701 $aBoutier$b A$g(Alain)$0521547 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910141598303321 996 $aLaser metrology in fluid mechanics$92032081 997 $aUNINA