LEADER 01664oas 2200673 a 450 001 9910141563603321 005 20251113213013.0 011 $a2199-3211 035 $a(DE-599)ZDB2523322-1 035 $a(OCoLC)792927426 035 $a(CONSER) 2019204065 035 $a(CKB)110975506072283 035 $a(EXLCZ)99110975506072283 100 $a20120502a20069999 uy a 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aInternational journal of fuzzy systems 210 1$aTaiwan :$cZhonghua Minguo mo hu xue hui 210 31$a[Berlin] :$cSpringer Berlin Heidelberg 215 $a1 online resource 300 $aRefereed/Peer-reviewed 311 08$a1562-2479 517 1 $aIJFS 517 1 $aIJFS mo hu xi tong qi kan 531 0 $aInt. j. fuzzy syst. 606 $aFuzzy systems$vPeriodicals 606 $aSyste?mes flous$vPe?riodiques 606 $aFuzzy systems$2fast 608 $aPeriodicals$2fast 615 0$aFuzzy systems 615 6$aSyste?mes flous 615 7$aFuzzy systems 676 $a511.322 801 0$bHKP 801 1$bHKP 801 2$bOCLCQ 801 2$bOCLCF 801 2$bOCLCO 801 2$bGRU 801 2$bOCLCQ 801 2$bZ5A 801 2$bDLC 801 2$bCUS 801 2$bSFB 801 2$bVHC 801 2$bOCLCO 801 2$bERD 801 2$bVT2 801 2$bU3W 801 2$bREB 801 2$bOCLCQ 801 2$bOCLCO 906 $aJOURNAL 912 $a9910141563603321 996 $aInternational Journal of Fuzzy Systems$91976095 997 $aUNINA LEADER 05650nam 22006375 450 001 9910580147003321 005 20251113204234.0 010 $a3-031-05318-4 024 7 $a10.1007/978-3-031-05318-4 035 $a(MiAaPQ)EBC7023559 035 $a(Au-PeEL)EBL7023559 035 $a(CKB)24094355300041 035 $a(PPN)269151516 035 $a(OCoLC)1333920787 035 $a(DE-He213)978-3-031-05318-4 035 $a(EXLCZ)9924094355300041 100 $a20220627d2022 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMathematics and Statistics for Science /$fby James Sneyd, Rachel M. Fewster, Duncan McGillivray 205 $a1st ed. 2022. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2022. 215 $a1 online resource (952 pages) 225 1 $aMathematics and Statistics Series 311 08$aPrint version: Sneyd, James Mathematics and Statistics for Science Cham : Springer International Publishing AG,c2022 9783031053177 320 $aIncludes bibliographical references and index. 327 $aPart I Units and Measurement -- 1 Units -- 2 Measurement, rounding and uncertainty -- Part II Functions and Complex Numbers -- 3 Functions -- 4 Exponential and log functions -- 5 Periodic functions -- 6 Linearising functions -- 7 Complex numbers -- Part III Vectors, Matrices and Linear Systems -- 8 Vectors -- 9 Matrices -- 10 Systems of linear equations -- 11 Solving systems of linear equations using matrices -- Part IV Differentiation: Functions of One Variable -- 12 Limits -- 13 Differentiation as a limit -- 14. Differentiation in practice -- 15 Numerical differentiation -- 16 Implicit differentiation -- 17 Maxima and minima -- Part V Differentiation: Functions of Multiple Variables -- 18 Functions of multiple variables -- 19 Partial derivatives -- 20 Extreme of functions of two (or more) variables -- Part VI Integration -- 21 The area under a curve -- 22 Calculating antiderivatives and areas -- 23 Integration techniques -- 24 Numerical integration -- Part VII Differential Equations -- 25 First-order ordinary differential equations -- 26 Numerical solutions of differential equations -- Part VIII Probability -- 27 Probability foundations -- 28 Random variables -- 29 Binomial distribution -- 30 Conditional probability -- 31 Total probability rule -- Part IX Statistical inference -- 32 Hypothesis test -- 33 Hypothesis testing in practice -- 34 Estimation and likelihood -- Part X Discrete Probability Distributions -- 35 Simulation and visualisation -- 36 Mean -- 37 Variance -- 38 Discrete probability models -- Part XI Continuous Probability Distributions -- 39 Continuous random variables -- 40 Common continuous probability models -- 41 Normal distribution and inference -- Part XII Linear Regression -- 42 Fitting linear functions: theory and practice -- 43 Quantifying relationships -- References -- Index. 330 $aMathematics and statistics are the bedrock of modern science. No matter which branch of science you plan to work in, you simply cannot avoid quantitative approaches. And while you won?t always need to know a great deal of theory, you will need to know how to apply mathematical and statistical methods in realistic scenarios. That is precisely what this book teaches. It covers the mathematical and statistical topics that are ubiquitous in early undergraduate courses, but does so in a way that is directly linked to science. Beginning with the use of units and functions, this book covers key topics such as complex numbers, vectors and matrices, differentiation (both single and multivariable), integration, elementary differential equations, probability, random variables, inference and linear regression. Each topic is illustrated with widely-used scientific equations (such as the ideal gas law or the Nernst equation) and real scientific data, often taken directly from recent scientific papers. The emphasis throughout is on practical solutions, including the use of computational tools (such as Wolfram Alpha or R), not theoretical development. There is a large number of exercises, divided into mathematical drills and scientific applications, and full solutions to all the exercises are available to instructors. Mathematics and Statistics for Science covers the core methods in mathematics and statistics necessary for a university degree in science, highlighting practical solutions and scientific applications. Its pragmatic approach is ideal for students who need to apply mathematics and statistics in a real scientific setting, whether in the physical sciences, life sciences or medicine. 410 0$aMathematics and Statistics Series 606 $aMathematics 606 $aStatistics 606 $aGeneral Mathematics 606 $aApplications of Mathematics 606 $aStatistics 606 $aStatistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences 615 0$aMathematics. 615 0$aStatistics. 615 14$aGeneral Mathematics. 615 24$aApplications of Mathematics. 615 24$aStatistics. 615 24$aStatistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 676 $a507.2 676 $a510 700 $aSneyd$b James$023218 702 $aMcGillivray$b Duncan 702 $aFewster$b Rachel M. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910580147003321 996 $aMathematics and statistics for science$92997434 997 $aUNINA