LEADER 01205nam0-22004091i-450- 001 990001214400403321 005 20100216193632.0 035 $a000121440 035 $aFED01000121440 035 $a(Aleph)000121440FED01 035 $a000121440 100 $a20100212d1972----km-y0itay50------ba 101 0 $afre 102 $aFR 200 1 $aGroupes et algèbres de Lie. 2, Algèbres de Lie libres ; 3, Groupes de Lie$fN. Bourbaki 210 $aParis$cHermann$d1972 215 $a320 p.$d24 cm 225 1 $aÉléments de mathématique$v37 225 1 $aActualités scientifiques et industrielles$v1349 610 0 $aOpere di matematica generale 610 0 $aOpera di Bourbaki 610 0 $aAlgebra 676 $a512 700 1$aBourbaki,$bNicolas$0334608 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001214400403321 952 $a02 16 D 9$b4204$fFINBN 952 $a12-H-37$b13121$fMA1 952 $a13-007.001$bF.D. 421$fFI1 952 $aMXXIX-A-129$b1860$fMAS 959 $aFINBN 959 $aMA1 959 $aFI1 959 $aMAS 996 $aGroupes et algèbres de Lie. 2, Algèbres de Lie libres ; 3, Groupes de Lie$9342819 997 $aUNINA LEADER 02556nam 2200613 a 450 001 9910141513503321 005 20170815095336.0 010 $a1-118-60430-X 010 $a1-299-14154-4 010 $a1-118-60447-4 010 $a1-118-60360-5 035 $a(CKB)2670000000327427 035 $a(EBL)1117284 035 $a(OCoLC)827208456 035 $a(SSID)ssj0000822636 035 $a(PQKBManifestationID)11418080 035 $a(PQKBTitleCode)TC0000822636 035 $a(PQKBWorkID)10757090 035 $a(PQKB)11201244 035 $a(OCoLC)826652791 035 $a(MiAaPQ)EBC1117284 035 $a(EXLCZ)992670000000327427 100 $a20110608d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aTree-based graph partitioning constraint$b[electronic resource] /$fXavier Lorca 210 $aLondon $cISTE ;$aHoboken, N.J. $cWiley$d2011 215 $a1 online resource (252 p.) 225 1 $aISTE 300 $aDescription based upon print version of record. 311 $a1-84821-303-4 320 $aIncludes bibliographical references and index. 327 $apt. 1. Constraint programming and foundations of graph theory -- pt. 2. Characterization of tree-based graph partitioning constraints -- pt. 3. Implementation : task planning -- pt. 4. Conclusion and future work. 330 $aCombinatorial problems based on graph partitioning enable us to mathematically represent and model many practical applications. Mission planning and the routing problems occurring in logistics perfectly illustrate two such examples. Nevertheless, these problems are not based on the same partitioning pattern: generally, patterns like cycles, paths, or trees are distinguished. Moreover, the practical applications are often not limited to theoretical problems like the Hamiltonian path problem, or K-node disjoint path problems. Indeed, they usually combine the graph partitioning problem with sever 410 0$aISTE 606 $aConstraint programming (Computer science) 606 $aGraph theory 608 $aElectronic books. 615 0$aConstraint programming (Computer science) 615 0$aGraph theory. 676 $a005.1/16 676 $a005.116 686 $aMAT029000$2bisacsh 700 $aLorca$b Xavier$0855877 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910141513503321 996 $aTree-based graph partitioning constraint$91910738 997 $aUNINA