LEADER 05554nam 2200733Ia 450 001 9910141395203321 005 20170814174439.0 010 $a1-119-20539-5 010 $a1-283-60389-6 010 $a9786613916341 010 $a1-118-33340-3 035 $a(CKB)2670000000246161 035 $a(EBL)946956 035 $a(OCoLC)815384647 035 $a(SSID)ssj0000742136 035 $a(PQKBManifestationID)11451379 035 $a(PQKBTitleCode)TC0000742136 035 $a(PQKBWorkID)10743363 035 $a(PQKB)10937933 035 $a(MiAaPQ)EBC946956 035 $a(EXLCZ)992670000000246161 100 $a20120516d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aWealth regeneration at retirement$b[electronic resource] $eplanning for a lifetime of leadership /$fKaycee Krysty with Robert Moser 210 $aHoboken, NJ $cJohn Wiley and Sons, Inc.$d2012 215 $a1 online resource (194 p.) 225 0 $aBloomberg financial series 300 $aIncludes index. 311 $a1-118-33057-9 311 $a1-118-27656-6 327 $aWealth Regeneration at Retirement: Planning for a Lifetime of Leadership; Copyright; Contents; Acknowledgments; Foreword; Introduction: Where to Begin?; Could This Be You?; Intense? Me? Really? Yes, You; Now, It's Your Turn; Standing on the Edge of the Cliff; Part I: Redefining Retirement; Chapter 1: It's All about You (Really It Is); We versus Me; It's Time for It to Be All about You; Real Life, Real Money; Wealth Regeneration, What's That?; Old Money; New Wealth; The Principles; What's Next?; You Have to Sleep at Night; Parting Thoughts; Chapter 2: The ""R"" Word; There Are Lots of Us 327 $aNow What?The Hero's Farewell; What about Me?; What We've Learned; Where Do You Fit?; Parting Thoughts; Chapter 3: The Grab Bag of Life; Change Has Impact; Managing Change; The New Rules; Parting Thoughts; Chapter 4: It's Not Rocket Science; Strategic Planning; Change Management; Financial Forecasting; Risk Assessment; Building Teams; Holding People Accountable; Meaningful Work; You've Got This Wired; Parting Thoughts; Chapter 5: Leading in a New Way; What Is Generativity?; Generativity Is Leadership; Have It Your Way; It's About Regeneration; Parting Thoughts 327 $aPart II: The Wealth Regeneration DisciplineChapter 6: The Concept of the Wheel; Circle to Wheel; Dealing with Change; What's Next?; You Know How to Do This; Get It Rolling; A Kick in the . . .; Looking at What Happens; Profile: Tom Campion; Chapter 7: Know Where You Are; Defining Your Wealth; The Dual Balance Sheet; Financial Capital; Human Capital; Lifestyle Analysis-How Much Is Enough?; How Sustainable Is Your Wealth?; Profile: Dick Pechter; Toolkit; Worksheet 1: Balance Sheet for Financial Capital; Worksheet 2: Balance Sheet for Human Capital; Worksheet 3: Possible Spending Categories 327 $aChapter 8: Know Who You AreRecognizing the Crucible; Facing the Questions; Back to the Future; Seriously, Try This Now; And When You Have a Partner; Flow; So Enough Touchy-Feely Already?; Profile: Peter Nostrand; Toolkit; Worksheet 1: Food for Thought; Worksheet 2: Personal History Matrix; Worksheet 3: Your Life in Retrospect; Worksheet 4: More Great Questions for the Car (or Date Night or on a Beach . . .); Chapter 9: Know Where You Want to Go; Embracing the Endgame; Getting Strategic; Your Purpose; Now for That Vision Thing; How Does It Look from the Top of the Mountain? 327 $aProfile: Bob BuntingTookit; Worksheet 1: Your Life Timeline; Worksheet 2: Discovering Your Passions; Worksheet 3: Your Purpose; Worksheet 4: Letter to a Friend; Worksheet 5: Schedule for a Future Day; Chapter 10: What to Do to Get There from Here; Keeping It Real; Begin at the Beginning; Purpose Is the Destination; What's Nonnegotiable?; What's Just Ahead?; Then, Get Going; What to Do If You Still Don't Know What to Do; Finally, Let's Talk about Money; What If the Scenarios Suggest I'm Spending Too Much Money?; A Word about Investment Policy; You Can Do This 327 $aProfile: Julie Weston and Gerry Morrison 330 $a Tailoring retirement for successful business leaders Traditional retirement planning fails to meet the needs of wealthy baby boomers, particularly those who are business leaders. There is no "one size fits all" answer. Wealth Regeneration at Retirement: Planning for a Lifetime of Leadership presents an alternative - one that acts more like a GPS. The authors, Kaycee Krysty and Bob Moser, leaders of the highly regarded Seattle-based wealth management firm, Laird Norton Tyee, use a proprietary discipline, Wealth Regeneration®, to calculate the route to retirement and be 410 0$aBloomberg Financial 606 $aRetirement$zUnited States$xPlanning 606 $aRetirement income$zUnited States 606 $aExecutives$zUnited States 606 $aBaby boom generation$zUnited States 608 $aElectronic books. 615 0$aRetirement$xPlanning. 615 0$aRetirement income 615 0$aExecutives 615 0$aBaby boom generation 676 $a306.3/80973 676 $a306.380973 676 $a332 686 $aBUS050040$2bisacsh 700 $aKrysty$b Kaycee W$0927753 701 $aMoser$b Robert$0927754 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910141395203321 996 $aWealth regeneration at retirement$92084448 997 $aUNINA LEADER 02090nas 2200733- 450 001 9910142970103321 005 20231101153722.0 011 $a1758-5740 035 $a(OCoLC)421100621 035 $a(CKB)1000000000758386 035 $a(CONSER)--2009201943 035 $a(DE-599)ZDB2503300-1 035 $a(EXLCZ)991000000000758386 100 $a20090702a20099999 --- a 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aShoulder & elbow 210 1$a[Malden, MA] :$cWiley Blackwell,$d[2009]- 210 4$d©2009- 210 31$a[London] :$cSAGE Piblications 215 $a1 online resource 300 $aRefereed/Peer-reviewed 311 $a1758-5732 517 1 $aShoulder and elbow 531 $aSHOULDER AND ELBOW 531 $aSHOULDER ELBOW 531 0 $aShould. elb. 606 $aElbow$xDiseases$vPeriodicals 606 $aElbow$xSurgery$vPeriodicals 606 $aShoulder$xDiseases$vPeriodicals 606 $aShoulder$xSurgery$vPeriodicals 606 $aShoulder 606 $aElbow 606 $aShoulder Joint 606 $aElbow Joint 606 $aElbow$xDiseases$2fast$3(OCoLC)fst00904257 606 $aElbow$xSurgery$2fast$3(OCoLC)fst00904263 606 $aShoulder$xDiseases$2fast$3(OCoLC)fst01117700 606 $aShoulder$xSurgery$2fast$3(OCoLC)fst01117706 608 $aPeriodical 608 $aPeriodicals.$2fast 608 $aPeriodicals.$2lcgft 615 0$aElbow$xDiseases 615 0$aElbow$xSurgery 615 0$aShoulder$xDiseases 615 0$aShoulder$xSurgery 615 12$aShoulder 615 12$aElbow 615 22$aShoulder Joint 615 22$aElbow Joint 615 7$aElbow$xDiseases. 615 7$aElbow$xSurgery. 615 7$aShoulder$xDiseases. 615 7$aShoulder$xSurgery. 676 $a610 676 $a610 712 02$aBritish Elbow & Shoulder Society, 906 $aJOURNAL 912 $a9910142970103321 996 $aShoulder & elbow$92273818 997 $aUNINA LEADER 07419nam 2200505 450 001 9910484444603321 005 20231110225549.0 010 $a3-030-67956-X 035 $a(CKB)4100000011801626 035 $a(MiAaPQ)EBC6523371 035 $a(Au-PeEL)EBL6523371 035 $a(OCoLC)1243533736 035 $a(PPN)254719821 035 $a(EXLCZ)994100000011801626 100 $a20211015d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdvanced electromagnetic models for materials characterization and nondestructive evaluation /$fHarold A. Sabbagh [and three others] 210 1$aCham, Switzerland :$cSpringer,$d[2021] 210 4$d©2021 215 $a1 online resource (353 pages) $cillustrations 225 1 $aScientific Computation 311 $a3-030-67954-3 320 $aIncludes bibliographical references and index. 327 $aIntro -- Preface -- Acknowledgments -- Contents -- Part I Voxel-Based Inversion Algorithms -- 1 A Bilinear Conjugate-Gradient Inversion Algorithm -- 1.1 Optimization via Nonlinear Least-Squares -- 1.2 A Bilinear Conjugate-Gradient Inversion Algorithm Using Volume-Integrals -- 1.3 The Algorithm -- 1.4 Example: Raster Scan at Three Frequencies -- 2 Voxel-Based Inversion Via Set-Theoretic Estimation -- 2.1 The Electromagnetic Model Equations -- 2.2 Set-Theoretic Estimation -- 2.3 Statistical Analysis of the Feasible Set -- 2.4 A Layer-Stripping Algorithm -- 2.5 Some Examples of the Inversion Algorithm -- 2.6 Application to Aircraft Structures -- Part II Materials Characterization -- 3 Modeling Composite Structures -- 3.1 Background -- 3.2 Constitutive Relations for Advanced Composites -- 3.3 Example Calculations Using VIC-3D® -- 3.4 A Coupled-Circuit Model of Maxwell's Equations -- 3.5 Eddy-Current Detection of Prepreg FAWT -- 3.6 An Anisotropic Inverse Problem for Measuring FAWT -- 3.6.1 Return to an Analysis of Fig.3.10 -- 3.7 Further Results for Permittivity -- 3.8 Comments and Conclusions -- 3.9 Eigenmodes of Anisotropic Media -- 3.10 Computing a Green's Function for a Layered Workpiece -- 3.11 An Example of the Multilayer Model -- 3.12 A Bulk Model -- 4 Application of the Set-Theoretic Algorithm to CFRP's -- 4.1 Background -- 4.2 Statistical Analysis of the Feasible Set -- 4.3 An Anisotropic Inverse Problem for Measuring FAWT -- 4.3.1 First Set-Theoretic Result -- 4.3.2 Second Set-Theoretic Result -- 4.3.3 Comment -- 4.4 Modeling Microstructure Quantification Problems -- 4.4.1 Delaminations -- 4.4.2 Transverse Ply with Microcrack -- 4.5 Layer-Stripping for Anisotropic Flaws -- 4.6 Advanced Features for Set-Theoretic Microstructure Quantification -- 4.6.1 A Heuristic Iterative Scheme to Determine a Zero-Cutoff Threshold. 327 $a4.7 Progress in Modeling Microstructure Quantification -- 4.8 Handling Rotations of Anisotropic Media -- 5 An Electromagnetic Model for Anisotropic Media: Green's Dyad for Plane-Layered Media -- 5.1 Theory -- 5.2 Applications -- 5.3 Some Inverse Problems with Random Anisotropies -- 5.4 Detectability of Flaws in Anisotropic Media: Application to Ti64 -- 6 Stochastic Inverse Problems: Models and Metrics -- 6.1 Introducing the Problem -- 6.2 NLSE: Nonlinear Least-Squares Parameter Estimation -- 6.3 Confidence Levels: Stochastic Global Optimization -- 6.4 Summary -- 7 Integration of Functionals, PCM and Stochastic IntegralEquations -- 7.1 Theoretical Background -- 7.2 Probability Densities and Numerical Procedures -- 7.3 Second-Order Random Functions -- 7.4 A One-Dimensional Random Surface -- 7.5 gPC and PCM -- 7.6 HDMR and ANOVA -- 7.7 Determining the ANOVA Anchor Point -- 7.8 Interpolation Theory Using Splines Based Upon Higher-Order Convolutions of the Unit Pulse -- 7.9 Two-Dimensional Functions -- 7.10 Probability of Detection and the Chebychev Inequality -- 7.11 Consistency of Calculations -- Appendix 1: The Numerical Model -- Appendix 2: The Fortran RANDOM_NUMBER Subroutine -- 8 A Model for Microstructure Characterization -- 8.1 Introduction -- 8.2 Stochastic Euler Space -- 8.3 The Karhunen-Loe?ve Model -- 8.4 Anisotropic Covariances -- 8.5 The Geometric Autocorrelation Function -- 8.6 Results for the Anisotropic Double-Exponential Model -- 9 High-Dimension Model Representation via Sparse GridTechniques -- 9.1 Introduction -- 9.2 Mathematical Structure of the Problem -- 9.3 Clenshaw-Curtis Grids -- 9.4 The TASMANIAN Sparse Grids Module -- 9.5 First TASMANIAN Results -- 9.6 Results for 4D-Level 8 -- 9.7 The Geometry of the 4D-Level 8 Chebyshev Sparse Grid -- 9.8 Searching the Sparse Grid for a Starting Point for Inversion. 327 $a9.9 A Five-Dimensional Inverse Problem -- 9.10 Noisy Data and Uncertainty Propagation -- 10 Characterization of Atherosclerotic Lesions by Inversion of Eddy-Current Impedance Data -- 10.1 The Model -- 10.2 Sample Impedance Calculations -- 10.3 The Eight-Layer Inversion Algorithm -- 10.4 Lesion 2 -- 10.5 Noninvasive Detection and Characterization of Atherosclerotic Lesions -- 10.6 Electromagnetic Modeling of Biological Tissue -- 10.6.1 The Lesions Revisited -- 10.7 Determining Coil Parameters -- 10.7.1 Application to the 21.6mm Single-Turn Loop -- 10.8 Measuring the Frequency Response of Saline -- 10.9 Determining the Constitutive Parameters of Saline -- 10.10 Comments and Discussion -- 10.10.1 Summary -- Appendix: The Levenberg-Marquardt Parameter in Least-Squares Problems -- Part III Quantum Effects -- 11 Spintronics -- 11.1 Introduction -- 11.2 Paramagnetic Spin Dynamics and the Spin Hamiltonian -- 11.2.1 Application to Fe3+:TiO2 -- 11.2.2 Ho++:CaF2 -- 11.3 Superparamagnetic Iron Oxide -- 11.4 Fe3+ and Hund's Rules -- 11.5 Crystalline Anisotropy and TiO2 -- 11.5.1 Application to a `Magnetic Lesion' -- 11.6 Static Interaction Energy of Two Magnetic Moments -- 12 Carbon-Nanotube Reinforced Polymers -- 12.1 Introduction -- 12.2 Modeling Piezoresistive Effects in Carbon Nanotubes -- 12.2.1 The Structure of CNTs -- 12.3 Electromagnetic Features of CNTs -- 12.4 Quantum-Mechanical Model for Conductivity -- 12.5 What Are We Looking At? -- 12.6 An Example of a Bianisotropic System -- 12.7 Modeling Paramagnetic Effects in Carbon Nanotubes -- 12.7.1 Paramagnetic Spin Dynamics and the Spin Hamiltonian -- 12.7.2 Application to Fe3+:TiO2 -- 12.7.3 Superparamagnetic Iron Oxide -- Two Spins -- Three Spins -- 12.8 Inverse Problems -- 12.8.1 Inverse Problem No. 1 -- 12.8.2 A Thermally-Activated Transport Model -- 12.8.3 A Simple Inverse Problem. 327 $a12.8.4 Voxel-Based Inversion: A Surface-Breaking Checkerboard at 50MHz -- 12.8.5 Voxel-Based Inversion: A Buried Checkerboard -- 12.8.6 Spatial Imaging Using Embedded CNT Sensors -- 12.8.7 Inverse Problem No. 2: Characterizing the CNT via ESR -- 12.8.8 What Does VIC-3D® Need? -- References -- Index. 410 0$aScientific Computation 606 $aNondestructive testing 606 $aElectromagnetic testing 615 0$aNondestructive testing. 615 0$aElectromagnetic testing. 676 $a620.1127 700 $aSabbagh$b Harold A.$0848094 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910484444603321 996 $aAdvanced electromagnetic models for materials characterization and nondestructive evaluation$91894172 997 $aUNINA