LEADER 01044nam a2200253 i 4500 001 991000515479707536 008 030520s2002 it a 000 0 ita 020 $a8883910656 035 $ab12628621-39ule_inst 040 $aFac. Economia$bita 082 14$a658.8 100 1 $aCamellini, Mattia$0482214 245 10$aE- mail marketing di successo :$bguida all'uso delle nuove tecnologie nel marketing interattivo : esempi pratici con risultati /$cMattia Camellini 260 $aMilano :$bLupetti,$c2002 300 $a107 p. :$bill. ;$c23 cm 490 $aConoscere e usare i media 500 $aContiene glossario (pp. 95-104) e bibliografia 650 4$aPosta elettronica$xImpiego nel marketing 907 $a.b12628621$b18-12-18$c10-03-04 912 $a991000515479707536 945 $aLE025 ECO 658.8 CAM02.01$g1$i2025000093607$lle025$nCatalogato 2018$op$pE10.00$q-$rl$s- $t0$u6$v2$w6$x0$y.i13513667$z22-04-04 996 $aE- mail marketing di successo$91747222 997 $aUNISALENTO 998 $ale025$b20-04-03$cm$da $e-$fita$git $h0$i1 LEADER 05090nam 2200853 a 450 001 9910141367303321 005 20200520144314.0 010 $a9781118345948 010 $a1118345940 010 $a9781118345955 010 $a1118345959 010 $a9781283835008 010 $a1283835002 010 $a9781118345924 010 $a1118345924 035 $a(CKB)2670000000278972 035 $a(EBL)861717 035 $a(SSID)ssj0000756376 035 $a(PQKBManifestationID)11393186 035 $a(PQKBTitleCode)TC0000756376 035 $a(PQKBWorkID)10751279 035 $a(PQKB)10519945 035 $a(DLC) 2012008712 035 $a(Au-PeEL)EBL861717 035 $a(CaPaEBR)ebr10627211 035 $a(CaONFJC)MIL414750 035 $a(PPN)170611078 035 $a(OCoLC)778857698 035 $a(CaSebORM)9781118166406 035 $a(MiAaPQ)EBC861717 035 $a(OCoLC)859157001 035 $a(OCoLC)ocn859157001 035 $a(FR-PaCSA)88813240 035 $a(FRCYB88813240)88813240 035 $a(Perlego)1013829 035 $a(EXLCZ)992670000000278972 100 $a20120229d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 12$aA modern theory of random variation $ewith applications in stochastic calculus, financial mathematics, and Feynman integration /$fPatrick Muldowney 205 $a1st edition 210 $aHoboken, N.J. $cWiley$d2012 215 $a1 online resource (545 p.) 300 $aDescription based upon print version of record. 311 08$a9781118166406 311 08$a111816640X 320 $aIncludes bibliographical references and index. 327 $aA Modern Theory of Random Variation: With Applications in Stochastic Calculus, Financial Mathematics, and Feynman Integration; Contents; Preface; Symbols; 1 Prologue; 1.1 About This Book; 1.2 About the Concepts; 1.3 About the Notation; 1.4 Riemann, Stieltjes, and Burkill Integrals; 1.5 The -Complete Integrals; 1.6 Riemann Sums in Statistical Calculation; 1.7 Random Variability; 1.8 Contingent and Elementary Forms; 1.9 Comparison With Axiomatic Theory; 1.10 What Is Probability?; 1.11 Joint Variability; 1.12 Independence; 1.13 Stochastic Processes; 2 Introduction 327 $a2.1 Riemann Sums in Integration2.2 The -Complete Integrals in Domain ]0,1]; 2.3 Divisibility of the Domain ]0,1]; 2.4 Fundamental Theorem of Calculus; 2.5 What Is Integrability?; 2.6 Riemann Sums and Random Variability; 2.7 How to Integrate a Function; 2.8 Extension of the Lebesgue Integral; 2.9 Riemann Sums in Basic Probability; 2.10 Variation and Outer Measure; 2.11 Outer Measure and Variation in [0,1]; 2.12 The Henstock Lemma; 2.13 Unbounded Sample Spaces; 2.14 Cauchy Extension of the Riemann Integral; 2.15 Integrability on ]0,(infinity)[; 2.16 ""Negative Probability"" 327 $a2.17 Henstock Integration in Rn2.18 Conclusion; 3 Infinite-Dimensional Integration; 3.1 Elements of Infinite-Dimensional Domain; 3.2 Partitions of RT; 3.3 Regular Partitions of RT; 3.4 ?-Fine Partially Regular Partitions; 3.5 Binary Partitions of RT; 3.6 Riemann Sums in RT; 3.7 Integrands in RT; 3.8 Definition of the Integral in RT; 3.9 Integrating Functions in RT; 4 Theory of the Integral; 4.1 The Henstock Integral; 4.2 Gauges for RT; 4.3 Another Integration System in RT; 4.4 Validation of Gauges in RT; 4.5 The Burkill-Complete Integral in RT; 4.6 Basic Properties of the Integral 327 $a5.10 Introduction to Central Limit Theorem5.11 Proof of Central Limit Theorem; 5.12 Probability Symbols; 5.13 Measurability and Probability; 5.14 The Calculus of Probabilities; 6 Gaussian Integrals; 6.1 Fresnel's Integral; 6.2 Evaluation of Fresnel's Integral; 6.3 Fresnel's Integral in Finite Dimensions; 6.4 Fresnel Distribution Function in Rn; 6.5 Infinite-Dimensional Fresnel Integral; 6.6 Integrability on RT; 6.7 The Fresnel Function Is VBG*; 6.8 Incremental Fresnel Integral; 6.9 Fresnel Continuity Properties; 7 Brownian Motion; 7.1 c-Brownian Motion; 7.2 Brownian Motion With Drift 327 $a7.3 Geometric Brownian Motion 330 $a"This book presents a self-contained study of the Riemann approach to the theory of random variation and assumes only some familiarity with probability or statistical analysis, basic Riemann integration, and mathematical proofs. The author focuses on non-absolute convergence in conjunction with random variation"--$cProvided by publisher. 606 $aRandom variables 606 $aCalculus of variations 606 $aPath integrals 606 $aMathematical analysis 615 0$aRandom variables. 615 0$aCalculus of variations. 615 0$aPath integrals. 615 0$aMathematical analysis. 676 $a519.2/3 686 $aMAT034000$2bisacsh 700 $aMuldowney$b P$g(Patrick),$f1946-$049453 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910141367303321 996 $aA modern theory of random variation$91948448 997 $aUNINA