LEADER 10486nam 2200481 450 001 9910555244603321 005 20220819171256.0 010 $a1-119-75206-X 010 $a1-119-75224-8 010 $a1-119-75221-3 035 $a(MiAaPQ)EBC6817988 035 $a(Au-PeEL)EBL6817988 035 $a(CKB)19935016500041 035 $a(EXLCZ)9919935016500041 100 $a20220819d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNon-halogenated flame retardant handbook /$fAlexander B. Morgan 205 $aSecond edition. 210 1$aHoboken, New Jersey ;$aBeverly, Massachusetts :$cJohn Wiley & Sons, Inc. :$cScrivener Publishing LLC,$d[2022] 210 4$d©2022 215 $a1 online resource (608 pages) 311 08$aPrint version: Morgan, Alexander B. Non-Halogenated Flame Retardant Handbook Newark : John Wiley & Sons, Incorporated,c2021 9781119750567 327 $aCover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Regulations and Other Developments/ Trends/Initiatives Driving Non-Halogenated Flame Retardant Use -- 1.1 Regulatory History of Halogenated vs. Non-Halogenated Flame Retardants -- 1.2 Regulations of Fire Safety and Flame Retardant Chemicals -- 1.3 Current Regulations -- 1.3.1 International - United Nations -- 1.3.2 United States (Federal vs. State) -- 1.3.3 Canada -- 1.3.4 European Union -- 1.3.5 Asia -- 1.3.6 China -- 1.3.7 Japan -- 1.3.8 Korea -- 1.3.9 Australia -- 1.4 Fire Safety and Non-Fire Safety Issues Requiring Non-Halogenated Flame Retardants -- 1.5 Regulatory Outlook and Future Market Drivers -- References -- 2 Phosphorus-Based Flame Retardants -- 2.1 Introduction -- 2.2 Main Classes of Phosphorus-Based Flame Retardants -- 2.3 Red Phosphorus -- 2.4 Ammonium and Amine Phosphates -- 2.5 Metal Hypophosphites, Phosphites and Dialkyl Phosphinates -- 2.6 Aliphatic Phosphates and Phosphonates -- 2.7 Aromatic Phosphates and Phosphonates -- 2.8 Aromatic Phosphinates -- 2.9 Phosphine Oxides -- 2.10 Phosphazenes -- 2.11 Environmental Fate and Exposure to Organophosphorus FRs -- 2.12 Conclusions and Further Trends -- References -- 3 Mineral Filler Flame Retardants -- 3.1 Introduction -- 3.2 Industrial Importance of Mineral Flame Retardants -- 3.2.1 Market Share of Mineral FRs -- 3.2.2 Synthetic Mineral FRs within the Industrial Chemical Process Chain -- 3.2.3 Natural Mineral FRs -- 3.3 Overview of Mineral Filler FRs -- 3.3.1 Mineral Filler Flame Retardants by Chemistry -- 3.3.2 Classification by Production Process -- 3.3.2.1 Crushing and Grinding -- 3.3.2.2 Air Classification -- 3.3.2.3 Precipitation and Their Synthetic Processes -- 3.3.2.4 Surface Treatment -- 3.3.3 Physical Characterisation of Mineral FRs. 327 $a3.3.3.1 Particle Shape/Morphology/Aspect Ratio -- 3.3.3.2 Particle Size Distribution -- 3.3.3.3 Sieve Residue -- 3.3.3.4 BET Surface Area -- 3.3.3.5 Oil Absorption -- 3.3.3.6 pH-Value/Specific Conductivity -- 3.3.3.7 Bulk Density and Powder Flowability -- 3.3.3.8 Thermal Stability/Loss on Ignition/Endothermic Heat -- 3.3.4 General Impact of Mineral FRs on Polymer Material Properties -- 3.3.4.1 Optical Properties -- 3.3.4.2 Mechanical Properties -- 3.3.4.3 Water Uptake and Chemical Resistance -- 3.3.4.4 Thermal Properties -- 3.3.4.5 Electrical Properties -- 3.3.4.6 Rheological Properties -- 3.4 Working Principle of Hydrated Mineral Flame Retardants -- 3.4.1 Filler Loading, Flammability and Flame Propagation -- 3.4.2 Smoke Suppression -- 3.4.3 Heat Release -- 3.5 Thermoplastic and Elastomeric Applications -- 3.5.1 Compounding Technology -- 3.5.2 Compound Formulation Principals -- 3.5.3 Wire & -- Cable -- 3.5.4 Other Construction Products -- 3.5.5 Special Applications -- 3.5.6 Engineering Plastics for E& -- E Applications -- 3.6 Reactive Resins/Thermoset Applications -- 3.6.1 Production Processes for Glass Fiber-Reinforced Polymer Composite -- 3.6.1.1 Paste Production -- 3.6.1.2 Hand Lamination/Hand-Lay-Up -- 3.6.1.3 SMC and BMC -- 3.6.1.4 Pultrusion -- 3.6.1.5 RTM/RIM -- 3.6.2 Formulation Principles -- 3.6.3 Public Transport Applications of GFRP -- 3.6.4 E& -- E Applications -- 3.6.5 Construction and Industrial Applications -- 3.7 Conclusion, Trends and Challenges -- References -- 4 Intumescence-Based Flame Retardant -- 4.1 Introduction -- 4.2 Fundamentals of Intumescence -- 4.3 Intumescence on the Market -- 4.4 Reaction to Fire of Intumescent Materials -- 4.5 Resistance to Fire of Intumescent Materials -- 4.6 Conclusion and Future Trends -- References -- 5 Nitrogen-Based Flame Retardants -- 5.1 Introduction. 327 $a5.2 Main Types of Nitrogen-Based Flame Retardants -- 5.3 Ammonia-Based Flame Retardants -- 5.3.1 Ammonium Polyphosphate -- 5.3.2 Other Ammonia Salts -- 5.4 Melamine-Based Flame Retardants -- 5.4.1 Melamine as Flame Retardant -- 5.4.2 Melamine Salts -- 5.4.3 Melamine Cyanurate -- 5.4.4 Melamine Polyphosphate -- 5.4.5 Melamine Condensates and Its Salts -- 5.5 Nitrogen-Based Radical Generators -- 5.6 Phosphazenes, Phospham and Phosphoroxynitride -- 5.7 Cyanuric-Acid Based Flame Retardants -- 5.8 Summary and Conclusion -- References -- 6 Silicon-Based Flame Retardants -- 6.1 Introduction -- 6.2 Basics of Silicon Chemistry -- 6.3 Industrial Applications of Silicones -- 6.4 Silicon-Based Materials as Flame Retardant Materials -- 6.4.1 Inorganic Silicon-Based Flame Retardants -- 6.4.1.1 Silicon Dioxide (SiO2) (Silica) -- 6.4.1.2 Wollastonite -- 6.4.1.3 Magadiite -- 6.4.1.4 Sepiolite -- 6.4.1.5 Kaolin -- 6.4.1.6 Mica -- 6.4.1.7 Talc -- 6.4.1.8 Halloysite -- 6.4.1.9 Layered Silicate Nanocomposites -- 6.4.1.10 Sodium Silicate -- 6.4.1.11 Silsesquioxane -- 6.4.2 Organic Silicone-Based Flame Retardants -- 6.4.2.1 Polyorganosiloxanes -- 6.4.2.2 Silanes -- 6.4.3 Other Silicone-Based Flame Retardants -- 6.4.4 Silicone/Silica Protective Coatings -- 6.5 Mode of Actions of Silicone-Based Flame Retardants and Practical Use Considerations -- 6.5.1 Silicon Dioxide -- 6.5.2 Silicate-Based Minerals -- 6.5.3 Silicones -- 6.6 Future Trends in Silicon-Based Flame Retardants -- 6.7 Summary and Conclusions -- References -- 7 Boron-Based Flame Retardants in Non-Halogen Based Polymers -- 7.1 Introduction -- 7.2 Major Functions of Borates in Flame Retardancy -- 7.3 Major Commercial Boron-Based Flame Retardants and Their Applications -- 7.4 Properties and Applications of Boron-Base Flame Retardants -- 7.4.1 Boric Acid [B2O3·3H2O/B(OH)3], Boric Oxide (B2O3). 327 $a7.4.2 Alkaline Metal Borate -- 7.4.2.1 Borax Pentahydrate (Na2O·2B2O3·5H2O), Borax Decahydrate (Na2O·2B2O3·10H2O) -- 7.4.2.2 Disodium Octaborate Tetrahydrate (Na2O·4B2O3·4H2O) -- 7.4.3 Alkaline-Earth Metal Borate -- 7.4.3.1 Calcium Borates (xCaO·yB2O3·zH2O) -- 7.4.3.2 Magnesium Borate (xMgO·yB2O3·zH2O) -- 7.4.4 Transition Metal Borates -- 7.4.4.1.1 Firebrake ZB (2ZnO·3B2O3·3.5H2O) and Firebrake 500 (2ZnO·3B2O3) -- 7.4.4.1.2 Miscellaneous Metal Borates -- 7.4.6 Phosphorus-Containing Borates -- 7.4.6.1 Boron Phosphate (BPO4) -- 7.4.6.2 Metal Borophosphate -- 7.4.7 Silicon-Containing Borates -- 7.4.7.1 Borosilicate Glass and Frits -- 7.4.8 Carbon-Containing Boron or Borates -- 7.4.8.1 Graphene (Boron-Doped) -- 7.4.8.2 Boric Acid Esters [B(OR)3] -- 7.4.8.3 Boronic Acid [ArB(OH)2] -- 7.4.8.4 Boron Carbide (B4C) -- 7.5 Mode of Actions of Boron-Based Flame Retardants -- 7.6 Conclusions -- References -- 8 Non-Halogenated Conformal Flame Retardant Coatings -- List of Acronyms -- 8.1 Introduction to Conformal Coatings: The Role of Surface During Combustion -- 8.2 Fabrics -- 8.2.1 Natural Fabrics -- 8.2.2 Synthetic Fabrics and Blends -- 8.2.3 Process Equipment and Related Patents -- 8.3 Porous Materials -- 8.3.1 Open Cell PU Foams -- 8.3.2 Other Porous Substrates -- 8.3.3 Process Equipment and Related Patents -- 8.4 Other Substrates -- 8.5 Future Trends and Needs -- References -- 9 Multicomponent Flame Retardants -- 9.1 The Need for Multicomponent Flame Retardants -- 9.2 Concepts -- 9.3 Combination with Fillers -- 9.4 Adjuvants -- 9.5 Synergists -- 9.6 Combinations of Different Flame Retardants -- 9.7 Combinations of Different Flame-Retardant Groups in One Flame Retardant -- 9.8 Conclusion -- References -- 10 Other Non-Halogenated Flame Retardants and Future Fire Protection Concepts & -- Needs -- 10.1 The Periodic Table of Flame Retardants. 327 $a10.2 Transition Metal Flame Retardants -- 10.2.1 Vapor Phase Transition Metal Flame Retardants -- 10.2.2 Condensed Phase Transition Metal Flame Retardants -- 10.2.2.1 Metal Oxides -- 10.2.2.2 Metal Complexes -- 10.3 Sulfur-Based Flame Retardants -- 10.4 Carbon-Based Flame Retardants -- 10.4.1 Cross-Linking Compounds - Alkynes, Deoxybenzoin, Friedel-Crafts, Nitriles, Anhydrides -- 10.4.1.1 Alkynes -- 10.4.1.2 Deoxybenzoin -- 10.4.1.3 Friedel-Crafts -- 10.4.1.4 Nitriles -- 10.4.1.5 Anhydrides -- 10.4.2 Organic Carbonates -- 10.4.3 Graft Copolymerization -- 10.4.4 Expandable Graphite -- 10.5 Bio-Based Materials -- 10.6 Tin-Based Flame Retardants -- 10.6.1 Introduction -- 10.6.2 Zinc Stannates -- 10.6.3 Halogen-Free Applications -- 10.6.3.1 Polyolefins -- 10.6.3.2 Styrenics -- 10.6.3.3 Engineering Plastics -- 10.6.3.4 Thermosetting Resins -- 10.6.3.5 Elastomers -- 10.6.3.6 Paints and Coatings -- 10.6.3.7 Textiles -- 10.6.4 Novel Tin Additives -- 10.6.4.1 Coated Fillers -- 10.6.4.2 Tin-Modified Nanoclays -- 10.6.4.3 Mechanism of Action -- 10.6.4.4 Summary -- 10.7 Polymer Nanocomposites -- 10.8 Engineering Non-Hal FR Solutions -- 10.8.1 Barrier Fabrics -- 10.8.2 Coatings -- 10.8.2.1 Inorganic Coatings -- 10.8.2.2 IR Reflective Coatings -- 10.8.2.3 Nanoparticle Coatings -- 10.8.2.4 Conformal/Integrated Coatings -- 10.9 Future Directions -- 10.9.1 Polymeric Flame Retardants and Reactive Flame Retardants -- 10.9.2 End of Life Considerations For Flame Retardants -- 10.9.3 New and Growing Fire Risk Scenarios -- 10.9.4 Experimental Methodology for Flame Retardant Screening -- References -- Index -- EULA. 606 $aFireproofing agents 608 $aElectronic books. 615 0$aFireproofing agents. 676 $a628.9223 700 $aMorgan$b Alexander B.$0986793 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910555244603321 996 $aNon-Halogenated Flame Retardant Handbook$92817167 997 $aUNINA LEADER 03626nam 2200613 450 001 9910141359103321 005 20221206100656.0 010 $a1-283-86940-3 010 $a1-118-48707-9 024 7 $a10.1002/9781118487105 035 $a(CKB)2670000000308731 035 $a(EBL)1092860 035 $a(SSID)ssj0000811126 035 $a(PQKBManifestationID)11438926 035 $a(PQKBTitleCode)TC0000811126 035 $a(PQKBWorkID)10847096 035 $a(PQKB)10080648 035 $a(MiAaPQ)EBC1092860 035 $a(CaBNVSL)mat06480472 035 $a(IDAMS)0b00006481cffaf2 035 $a(IEEE)6480472 035 $a(OCoLC)828334133 035 $a(EXLCZ)992670000000308731 100 $a20151222d2013 uy 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aImplosion $elessons from national security, high reliability spacecraft, electronics, and the forces which changed them /$fL. Parker Temple 210 1$aHoboken, New Jersey :$cJohn Wiley & Sons Inc.,$d[2013] 210 2$a[Piscataqay, New Jersey] :$cIEEE Xplore,$d[2013] 215 $a1 online resource (370 p.) 300 $aDescription based upon print version of record. 311 $a1-118-48710-9 311 $a1-118-46242-4 320 $aIncludes bibliographical references and index. 327 $aList of Figures vii -- List of Tables ix -- Preface xi -- Acknowledgments xv -- Acronyms, Abbreviations, and Program Names xvii -- Part I Activation Energy (1931-1968) -- 1. Washington . . . We Have a Problem . . . 3 -- 2. The Quantum Leap 6 -- 3. Preparation 21 -- 4. The Final Frontiers 29 -- 5. Minuteman Means Reliability 58 -- 6. Skinning Cats 68 -- Part II Startup Transient (1969-1980) -- 7. Changing the Sea State 87 -- 8. Space Parts: From A to S 93 -- 9. There's S, and Then There's S 122 -- 10. A Little Revolution Now and Then Is Good 140 -- 11. Quality on the Horizon 144 -- Part III Switching Transient (1980-1989) -- 12. Crossing the Operational Divide 153 -- 13. Stocking the Shelves 168 -- 14. Hammered 184 -- 15. Battlegrounds: Reorganization and Reform 187 -- 16. Implementing Change in a Changing World 207 -- Part IV Shorting To Ground (1989-2002) -- 17. Leap First, Look Later 231 -- 18. Hardly Standing PAT 248 -- Part V Resetting the Circuit Breakers -- 19. Brewing the Perfect Storm 277 -- 20. Summing the Parts 301 -- Epilogue: Can One Ever Truly Go Home Again? 309 -- Index 322 330 $a Implosion is a focused study of the history and uses of high-reliability, solid-state electronics, military standards, and space systems that support our national security and defense. This book is unique in combining the interdependent evolution of and interrelationships among military standards, solid-state electronics, and very high-reliability space systems. Starting with a brief description of the physics that enabled the development of the first transistor, Implosion covers the need for standardizing military electronics, which began during World War II and continu 606 $aAstronautics and state$zUnited States 606 $aNational security$zUnited States$xHistory$y21st century 607 $aOuter space$xExploration$zUnited States 615 0$aAstronautics and state 615 0$aNational security$xHistory 676 $a621.38109 700 $aTemple$b L. Parker$cIII,$0845438 701 $aDelaney$b Patrick R$0115375 801 0$bCaBNVSL 801 1$bCaBNVSL 801 2$bCaBNVSL 906 $aBOOK 912 $a9910141359103321 996 $aImplosion$91887066 997 $aUNINA LEADER 01431nam a2200337 i 4500 001 991001207809707536 005 20020502185116.0 008 941222s1992 it 000 0 ita d 020 $a8820425971 035 $ab11479188-39ule_inst 035 $aPRUMB56787$9ExL 040 $aDip. di SSSC - Sociologia$bita 082 0 $a152 100 1 $aSchilder, Paul$0386007 245 10$aImmagine di sè e schema corporeo /$cPaul Schilder ; prefazione di Danilo Cargnello 260 $aMilano :$bAngeli,$cc1992 300 $a393 p. ;$c22 cm 490 0 $aCollana di pscicologia 500 $aTrad. di: The image and appearance of the human body 650 4$aPsicologia sociale 650 4$aSchema corporeo 700 1 $aCargnello, Danilo 907 $a.b11479188$b01-03-17$c01-07-02 912 $a991001207809707536 945 $aLE024 PS III 8$g1$i2021000152634$lle021$nex DUSS$o-$pE0.00$q-$rl$s- $t0$u1$v0$w1$x0$y.i1166955x$z01-07-02 945 $aLE022 MP 82 L 55$g1$i2022000148818$lle022$o-$pE0.00$q-$rl$s- $t0$u2$v1$w2$x0$y.i11274384$z28-06-02 945 $aLE022 MPs-S 120 D 28$g2$i2022000176866$lle022$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i13839317$z14-09-04 945 $aLE021 NIB5$g1$i2021000152627$lle021$o-$pE0.00$q-$rl$s- $t0$u2$v0$w2$x0$y.i11669548$z01-07-02 996 $aImmagine di sé e schema corporeo$9271366 997 $aUNISALENTO 998 $a(2)le022$a(2)le021$b01-01-94$cm$da $e-$fita$git $h0$i4