LEADER 05783nam 2200745Ia 450 001 9910141338503321 005 20230725032747.0 010 $a3-527-63608-0 010 $a1-280-66276-X 010 $a9786613639691 010 $a3-527-63607-2 010 $a3-527-63609-9 035 $a(CKB)2670000000152909 035 $a(EBL)822718 035 $a(OCoLC)747546206 035 $a(SSID)ssj0000611553 035 $a(PQKBManifestationID)11394248 035 $a(PQKBTitleCode)TC0000611553 035 $a(PQKBWorkID)10666088 035 $a(PQKB)10680807 035 $a(MiAaPQ)EBC822718 035 $a(Au-PeEL)EBL822718 035 $a(CaPaEBR)ebr10538735 035 $a(CaONFJC)MIL363969 035 $a(EXLCZ)992670000000152909 100 $a20110810d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aComputational thermo-fluid dynamics$b[electronic resource] $ein materials science and engineering /$fPetr A. Nikrityuk 205 $a2nd ed. 210 $aWeinheim, Germany $cWiley-VCH Verlag$dc2011 215 $a1 online resource (371 p.) 300 $aDescription based upon print version of record. 311 $a3-527-33101-8 320 $aIncludes bibliographical references and index. 327 $aComputational Thermo-Fluid Dynamics; Contents; Preface; Acknowledgments; 1 Introduction; 1.1 Heat and Fluid Flows in Materials Science and Engineering; 1.2 Overview of the Present Work; 2 Mathematical Description of Physical Phenomena in Thermofluid Dynamics; 2.1 Conservation Equations for Continuum Media; 2.1.1 Conservation of Mass; 2.1.2 Conservation of Momentum; 2.1.3 Energy Conservation Equation; 2.1.4 Conservation of Chemical Species; 2.1.5 Boussinesq Approximation; 2.1.6 Unified Form of Conservation Equations; 2.1.7 Nondimensional Form of Conservation Equations; 2.1.8 Short Summary 327 $a2.2 Boundary and Initial Conditions2.2.1 Heat Transfer; 2.2.2 Solutal Transfer; 2.2.3 Fluid Dynamics; 2.3 Conservation Equations in Electromagnetics; 2.3.1 Maxwell Equations; 2.3.2 Induction and Poisson Equations; 2.3.3 An Example of a Low Magnetic Reynolds Number Approximation: Rotating Magnetic Field; 3 Discretization Approaches and Numerical Methods; 3.1 The Finite Difference Method; 3.1.1 Introduction; 3.1.2 Approximation Schemes; 3.1.3 Example of Conservative Property of FDM; 3.1.4 Discretization Schemes of Unsteady Equations; 3.1.5 Example of Unsteady Diffusion Equation 327 $a3.2 The Finite Volume Method3.2.1 Basic Concept; 3.2.2 Interpolation Schemes; 3.2.3 Linearized Form of Discretized Conservation Equation; 3.2.4 Treatment of Source Terms; 3.2.5 Boundary Conditions; 3.2.6 Comparative Study of Schemes for One-Dimensional Convection/Diffusion Problem; 3.3 Solution of Linear Equation Systems; 3.3.1 Direct Methods; 3.3.2 Iterative Methods; 3.3.3 Residuals and Convergence; 3.3.4 Multigrid Method; 3.3.5 Illustration of Iterative Methods; 4 Calculations of Flows with Heat and Mass Transfer; 4.1 Solution of Incompressible Navier-Stokes Equations 327 $a4.2 Pressure and Velocity Coupling: SIMPLE Family4.2.1 SIMPLE; 4.2.2 SIMPLER; 4.2.3 SIMPLE with Collocated Variables Arrangement; 4.3 Illustrations of Schemes for Flow with Heat Transfer; 4.4 Complex Geometry Problems on Fixed Cartesian Grids; 4.4.1 Immersed Boundary Methods; 4.4.2 Cartesian Grid Methods; 4.4.3 Immersed Surface Reconstruction; 4.4.4 Illustration of Continuous-Forcing IBM; 5 Convection-Diffusion Phase-Change Problems; 5.1 Some Aspects of Solidification Thermodynamics; 5.1.1 One-Component Melts; 5.1.2 Binary Alloys; 5.1.3 Interface and Equilibrium 327 $a5.2 Modeling of Macroscale Phase-Change Phenomena5.2.1 Heat Transfer in Phase-Change Systems: Fixed and Moving Grids; 5.2.2 Mathematical Models of a Binary Alloy Solidification; 5.2.3 Closure Relations for the Volume Fraction of Liquid; 5.3 Turbulent Solidification; 5.3.1 Review of Unsteady RANS Modeling of a Solidification; 5.3.2 Conditions for the DNS of Convection-Driven Solidification; 5.4 Microscale Phase-Change Phenomena; 5.4.1 Basic Modeling Concepts; 5.4.2 Modified Cellular Automaton Model; 5.4.3 Virtual Interface Tracking Model; 5.5 Modeling of Crystal Growth 327 $a5.5.1 Modeling Approaches 330 $aCombining previously unconnected computational methods, this monograph discusses the latest basic schemes and algorithms for the solution of fluid, heat and mass transfer problems coupled with electrodynamics. It presents the necessary mathematical background of computational thermo-fluid dynamics, the numerical implementation and the application to real-world problems. Particular emphasis is placed throughout on the use of electromagnetic fields to control the heat, mass and fluid flows in melts and on phase change phenomena during the solidification of pure materials and binary alloys. Howev 606 $aMaterials$xThermal properties$xMathematical models 606 $aThermodynamics$xMathematical models 606 $aFluid dynamics$xMathematical models 606 $aHeat$xTransmission$xMathematical models 606 $aMass transfer$xMathematical models 615 0$aMaterials$xThermal properties$xMathematical models. 615 0$aThermodynamics$xMathematical models. 615 0$aFluid dynamics$xMathematical models. 615 0$aHeat$xTransmission$xMathematical models. 615 0$aMass transfer$xMathematical models. 676 $a333.79 676 $a620.11 700 $aNikrityuk$b Petr A$0944155 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910141338503321 996 $aComputational thermo-fluid dynamics$92131180 997 $aUNINA