LEADER 05229nam 2200661 a 450 001 9910141267303321 005 20230105231620.0 010 $a1-280-59110-2 010 $a9786613620934 010 $a1-118-30976-6 010 $a1-118-30974-X 010 $a1-118-30971-5 035 $a(CKB)2670000000175357 035 $a(EBL)832597 035 $a(OCoLC)787842615 035 $a(SSID)ssj0000637071 035 $a(PQKBManifestationID)11941569 035 $a(PQKBTitleCode)TC0000637071 035 $a(PQKBWorkID)10677799 035 $a(PQKB)10621853 035 $a(MiAaPQ)EBC832597 035 $a(Au-PeEL)EBL832597 035 $a(CaPaEBR)ebr10558737 035 $a(CaONFJC)MIL362093 035 $a(EXLCZ)992670000000175357 100 $a20111220d2012 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aInternal reflection and ATR spectroscopy$b[electronic resource] /$fMilan Milosevic 210 $aHoboken, N.J. $cJohn Wiley & Sons$dc2012 215 $a1 online resource (263 p.) 225 1 $aChemical analysis : a series of monographs on analytical chemistry and its applications ;$vv. 176 300 $aIncludes index. 311 $a0-470-27832-3 327 $aINTERNAL REFLECTION AND ATR SPECTROSCOPY; CONTENTS; PREFACE; 1: Introduction to Spectroscopy; 1.1 HISTORY; 1.2 DEFINITION OF TRANSMITTANCE AND REFLECTANCE; 1.3 THE SPECTROSCOPIC EXPERIMENT AND THE SPECTROMETER; 1.4 PROPAGATION OF LIGHT THROUGH A MEDIUM; 1.5 TRANSMITTANCE AND ABSORBANCE; 1.6 S/N IN A SPECTROSCOPIC MEASUREMENT; 2: Harmonic Oscillator Model for Optical Constants; 2.1 HARMONIC OSCILLATOR MODEL FOR POLARIZABILITY; 2.2 CLAUSIUS-MOSSOTTI EQUATION; 2.3 REFRACTIVE INDEX; 2.4 ABSORPTION INDEX AND CONCENTRATION; 3: Propagation of Electromagnetic Energy 327 $a3.1 POYNTING VECTOR AND FLOW OF ELECTROMAGNETIC ENERGY3.2 LINEAR MOMENTUM OF LIGHT; 3.3 LIGHT ABSORPTION IN ABSORBING MEDIA; 3.4 LAMBERT LAW AND MOLECULAR CROSS SECTION; 4: Fresnel Equations; 4.1 ELECTROMAGNETIC FIELDS AT THE INTERFACE; 4.2 SNELL'S LAW; 4.3 BOUNDARY CONDITIONS AT THE INTERFACE; 4.4 FRESNEL FORMULAE; 4.5 REFLECTANCE AND TRANSMITANCE OF INTERFACE; 4.6 SNELL'S PAIRS; 4.7 NORMAL INCIDENCE; 4.8 BREWSTER'S ANGLE; 4.9 THE CASE OF THE 45° ANGLE OF INCIDENCE; 4.10 TOTAL INTERNAL REFLECTION; 5: Evanescent Wave; 5.1 EXPONENTIAL DECAY AND PENETRATION DEPTH 327 $a5.2 ENERGY FLOW AT A TOTALLY INTERNALLY REFLECTING INTERFACE 5.3 THE EVANESCENT WAVE IN ABSORBING MATERIALS; 6: Electric Fields at a Totally Internally Reflecting Interface; 6.1 EX, EY, AND EZ FOR S-POLARIZED INCIDENT LIGHT; 6.2 EX, EY, AND EZ FOR P-POLARIZED INCIDENT LIGHT; 7: Anatomy of ATR Absorption; 7.1 ATTENUATED TOTAL REFLECTION (ATR) REFLECTANCE FOR S- AND P-POLARIZED BEAM; 7.2 ABSORBANCE TRANSFORM OF ATR SPECTRA; 7.3 WEAK ABSORPTION APPROXIMATION; 7.4 SUPERCRITICAL REFLECTANCE AND ABSORPTION OF EVANESCENT WAVE; 7.5 THE LEAKY INTERFACE MODEL; 8: Effective Thickness 327 $a8.1 DEFINITION AND EXPRESSIONS FOR EFFECTIVE THICKNESS 8.2 EFFECTIVE THICKNESS AND PENETRATION DEPTH; 8.3 EFFECTIVE THICKNESS AND ATR SPECTROSCOPY; 8.4 EFFECTIVE THICKNESS FOR STRONG ABSORPTIONS; 9: Internal Reflectance near Critical Angle; 9.1 TRANSITION FROM SUBCRITICAL TO SUPERCRITICAL REFLECTION; 9.2 EFFECTIVE THICKNESS AND REFRACTIVE INDEX OF SAMPLE; 9.3 CRITICAL ANGLE AND REFRACTIVE INDEX OF SAMPLE; 10: Depth Profiling; 10.1 ENERGY ABSORPTION AT DIFFERENT DEPTHS; 10.2 THIN ABSORBING LAYER ON A NONABSORBING SUBSTRATE; 10.3 THIN NONABSORBING FILM ON AN ABSORBING SUBSTRATE 327 $a10.4 THIN NONABSORBING FILM ON A THIN ABSORBING FILM ON A NONABSORBING SUBSTRATE11: Multiple Interfaces; 11.1 REFLECTANCE AND TRANSMITTANCE OF A TWO-INTERFACE SYSTEM; 11.2 VERY THIN FILMS; 11.3 INTERFERENCE FRINGES; 11.4 NORMAL INCIDENCE; 11.5 INTERFERENCE FRINGES AND TRANSMISSION SPECTROSCOPY; 11.6 THIN FILMS AND ATR; 11.7 INTERNAL REFLECTION: SUBCRITICAL, SUPERCRITICAL, AND IN BETWEEN; 11.8 UNUSUAL FRINGES; 11.9 PENETRATION DEPTH REVISITED; 11.10 REFLECTANCE AND TRANSMITTANCE OF A MULTIPLE INTERFACE SYSTEM; 12: Metal Optics; 12.1 ELECTROMAGNETIC FIELDS IN METALS; 12.2 PLASMA 327 $a12.3 REFLECTANCE OF METAL SURFACES 330 $aAttenuated Total Reflection (ATR) Spectroscopy is now the most frequently used sampling technique for infrared spectroscopy. This book fully explains the theory and practice of this method.Offers introduction and history of ATR before discussing theoretical aspectsIncludes informative illustrations and theoretical calculationsDiscusses many advanced aspects of ATR, such as depth profiling or orientation studies, and particular features of reflectance 410 0$aChemical analysis ;$vv. 176. 606 $aInternal reflection spectroscopy 606 $aAbsorption spectra 615 0$aInternal reflection spectroscopy. 615 0$aAbsorption spectra. 676 $a543/.59 700 $aMilosevic$b Milan$f1955-$0931465 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910141267303321 996 $aInternal reflection and ATR spectroscopy$92095378 997 $aUNINA